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Chapter 1

WHAT CAN WE DO USING
RIETAN-FP?

Written in Fortran 90, RIETAN-FP [1, 2] is a successor program to RIETAN [3], RIETAN-94 [4],
RIETAN-98 [5], and RIETAN-2000 [5–8]. RIETAN-FP is applicable to the following four main
purposes:

1. pattern decomposition by the Le Bail method [9],

2. refinement of lattice and structure parameters by the Rietveld method [10] ,

3. whole-pattern fitting based on the maximum-entropy method (MEM) [11–17],

4. local pattern decomposition by individual profile fitting [18] (a rather outdated and
impractical technique).

Figure 1.1 illustrates the above four purposes to be achieved by RIETAN-FP. In pattern
fitting 1´4, a premier and robust engine for nonlinear least squares by Gauss-Newton, Fletcher’s
modified Marquardt, and Powell’s conjugate-direction methods can be utilized, permitting stable
convergence in most refinements. The use of the conjugate-direction method, also known as
the direction set method in multi-dimensions, often makes it possible to escape from local
minima easily and automatically. It is relatively slow but excels at analyzing complex structures
such as (a) organic compounds having relatively large unit cells and molecular weights and (b)
micro-porous materials in final stages.

The Rietveld method is used to refine lattice and structure parameters from X-ray and
neutron powder diffraction data, from which structural information such as fractional coordinates,
occupancies, and atomic displacement parameters can be extracted as much as possible. Since it
is now very popular, its explanation is unnecessary here. For details of Rietveld analysis using
RIETAN-FP, read Chap. 2.

The Le Bail method provides us with the opportunity for estimation of integrated intensities
in the absence of any structural model with a simple procedure proposed by Rietveld. The
resulting integrated intensities serve for ab initio structure analysis by the heavy-atom (Patterson),
direct, and Monte Carlo, simulated-annealing, and genetic-algorithm methods. RIETAN-FP is
capable of outputting files for (a) improving integrated intensities for overlapping reflections and
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Figure 1.1: Four main purposes of RIETAN-FP

determining three-dimensional (3D) Patterson functions by the maximum-entropy Patterson
(MEP) method [19] with ALBA [20,21] and (b) construction of structural models with EXPO1 [22].
To refine lattice parameters, this method excels the Rietveld method when the effect of preferred
orientation or coarse particles is pronounced. This is a newborn function that needs to be
tested and improved further. Nevertheless, we confirmed that RIETAN-FP usually yields smaller
reliability indices than EXPO, particularly, on the use of hybrid pattern decomposition, where
Le Bail analysis is followed by individual profile fitting by the conjugate-direction method (see
Chap. 11).

RIETAN-FP offers a state-of-the-art structure-refinement technique alternative to the classical
Rietveld method: MEM-based Pattern Fitting (MPF). The revolutionary MPF technology was
implemented in RIETAN-FP to overcome limitations of conventional Rietveld analysis. RIETAN-
FP is distinguished from other programs for classical Rietveld analysis by this elegant methodology.
We have been distributing Dysnomia [17,23], which is the successor to PRIMA [13], for MEM
analysis in cooperation with RIETAN-FP.

Whole-pattern fitting and MEM analysis are alternately repeated in an iterative procedure
called REMEDY cycles, where the bias imposed by a structural model upon final electron/nuclear
densities is minimized. During the REMEDY cycles, the total number of electrons, F (000) (X-ray
diffraction), or the total coherent-scattering lengths (neutron diffraction) [24] in the unit cell is
fixed at that input by the user. Electron/nuclear-density distribution changes noticeably with
dramatic decreases in reliability indices based on integrated intensities during the REMEDY
cycles, which is a strong piece of evidence for the reduction in the bias of the structural model.
Consequently, crystal structures are virtually represented not by structure parameters but by 3D

1http://wwwba.ic.cnr.it/content/software
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CHAPTER 1. WHAT CAN WE DO USING RIETAN-FP?

electron/nuclear densities within the unit cell.
Individual profile fitting deals with a local powder-diffraction pattern within a limited 2θ

range. No constraints are imposed upon peak positions and integrated intensities of reflections
in that range. Both of them are directly refined by a method of nonlinear least squares together
with profile parameters.

A definite advantage of RIETAN-FP over other Rietveld-analysis programs is close cooperation
with a powerful 3D visualization system VESTA2 [25, 26], which enables quick evaluation of
results obtained by Rietveld and MPF analyses. VESTA fully utilizes the OpenGL Application
Programming Interface (API). Video cards equipped with GPUs supporting hardware acceleration
for OpenGL are desired to rotate, expand, shrink, and translate objects fast in three dimensions.
Personal computers with Windows, macOS, and Linux as operating systems allow us to run
VESTA swiftly and smoothly. With VESTA, graphics workstations are no longer necessary!

VESTA bears the bell in 3D visualization, rendering, and, consequently, graphic manipulation
of crystal structures and various physical quantities such as electron/nuclear densities determined
not only by X-ray and neutron diffraction but by electronic-structure calculations. It also supports
the 3D visualization of electrostatic potentials and wave functions that have both positive and
negative values, which allows us to obtain additional information about chemical bonding. Thus,
VESTA may be able to prevent phase separation between experimental and theoretical approaches.
We must understand crystal structures, electron/nuclear-density distribution, and electronic
states not two-dimensionally but three-dimensionally!

The removal of both absolute paths and (period + extensions) from names of most files input
and output by RIETAN-FP gives a common string, e.g., ‘Fapatite’ in the case of files contained
in folder Fapatite included under folder RIETAN_VENUS_examples in the distribution files. In
what follows, ‘hoge’ is the metasyntactic variable that should be replaced by the common string
consisting of 62 alphanumeric characters (A–Z, a–z, and 0–9) plus ‘_’ (underscore). For example,
hoge.ins is a user input file, hoge.int is an intensity data file, and hoge.lst is a standard-output
file.

2http://jp-minerals.org/vesta/en/
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Chapter 2

FUNDAMENTALS OF RIETVELD
ANALYSIS

“When you can measure what you are speaking about and express it in numbers, you
know something about it; but when you cannot express it in numbers, your knowledge
is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but
you have scarcely in your thoughts advanced to the state of science, whatever the
matter may be.”

Lord Kelvin

2.1 Raison D’être of the Rietveld Method

The Rietveld method is a technique for refining structure and lattice parameters directly from
whole X-ray or neutron powder-diffraction patterns without separating overlapped reflections
contained in them. In contrast with single-crystal diffraction, the projection of the 3D reciprocal
lattice onto the single dimension of a powder-diffraction pattern leads to a serious loss of structural
information. Solving phase problems in compounds with unknown structures is, therefore, very
difficult with powder-diffraction data unless the compounds have fairly high symmetry and
contain few atoms in their asymmetric units. However, once structural models can be constructed
by some means, the Rietveld method is available as a most powerful procedure for structure
refinements.

Many scientists, including even crystallographers, still have a preconceived idea that the
Rietveld method should be applied only when single crystals cannot be grown or when twins
are inevitably formed during crystallization processes and phase transitions. Such an idea is
judged to be too superficial from the standpoint of materials science. Most metal and inorganic
materials, e.g., intermetallic compounds, metal hydrides, solid-state ionics, superconductors,
zeolites, catalysts, inorganic ion exchangers, and ceramics, are polycrystals. The crystal (defect)
structures of single crystals may differ to some extent from those of polycrystalline materials. As
described above, the powder method always suffers from the disadvantage that an appreciable
amount of structural information is lost owing to the overlaps of reflections. Nevertheless, it
possesses several advantages over the single-crystal method:

1. easy preparation of polycrystalline samples,
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2. simple procedures for measurements,

3. the ease of in situ diffraction experiments in special sample environments (high/low
temperature, high pressure, gas atmosphere, etc.),

4. negligible secondary-extinction effects.

The starting point of all studies on crystalline materials is to learn their crystal structures
and chemical compositions accurately, and also the relationships between them. Synchrotron
X-ray powder diffraction [27, 28] is particularly useful for the analysis of complex structures
because of its extremely high resolution. Rietveld analysis can be regarded as the method for a
kind of state analysis by which the positions, atomic displacements, and occupancies of atomic
sites in crystalline materials are quantitatively determined. The principle of the Rietveld method
can be applied not only to elastic powder diffraction but to other spectroscopic techniques that
produce complex spectra containing overlapping reflections. Furthermore, precise determination
of compositional ratios in mixtures is possible with this method. The introduction of basic
information on the Rietveld method is, therefore, important for scientists and students in research
areas other than crystallography.

2.2 Amazing Ability of the Rietveld Method

The Rietveld method substantially contains the following data-processing procedures:

1. indexing of reflections,

2. separation of overlapping reflections in diffraction patterns,

3. separation of Kα1 and Kα2 reflections when using characteristic X rays,

4. background subtraction,

5. refinement of lattice parameters,

6. refinement of crystal-structure parameters (fractional coordinates, occupancies, and atomic
displacement parameters),

7. refinement of magnetic-structure parameters (magnitudes and directions of magnetic
moments),

8. correction for preferred orientation,

9. identification of impurity reflections,

10. quantitative analysis of mixtures,

11. determination of integrated intensities,1 full-widths at half-maximum intensities (FWHM),
and peak positions,

1Throughout this document, the integrated intensity for a reflection is defined as the area surrounded by its
diffraction profile and the background intensity.
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CHAPTER 2. FUNDAMENTALS OF RIETVELD ANALYSIS

12. determination of crystallite sizes and microstrains.

The Rietveld method, in which these complex calculations are executed simultaneously, is an
exquisite technique worthy of being the ultimate method for the analysis of powder-diffraction
data. It owes its dramatic development to the spread and improvement of computers in recent
years.

The Rietveld method is widely applicable to metals, inorganic compounds, and organic
compounds of low molecular weights provided that they are crystalline enough. Conventional X-
ray powder diffractometers using characteristic X rays are changed into high-performance machines
with which both structure and lattice parameters can be refined accurately by the Rietveld
method. The combination of X-ray powder diffraction and Rietveld refinement can provide us
with much more reliable information about average structures than the direct observation of
crystal structures by high-resolution transmission electron microscopy (HRTEM) and analysis of
X-ray absorption fine structures (XAFS). High-resolution powder diffraction data obtained from
synchrotron or neutron sources yield structure parameters with accuracy and precision which are
comparable to those obtained by the single-crystal X-ray method using four-circle goniometers.

2.3 Principle

Before the appearance of the Rietveld method, structure parameters were refined from diffraction
data using integrated intensities of respective reflections obtained by the nonlinear least-squares
fitting of diffraction patterns. This procedure is effective when dealing with those compounds
of high symmetry and simple structures that display relatively few reflections. However, it is
no longer useful when reflections overlap so heavily in the small-d region that they cannot be
separated by curve fitting.

In Rietveld analysis from angle-dispersive powder-diffraction data, a set of variable parameters,
x (x1, x2, x3, ¨ ¨ ¨xn), that represent powder-diffraction patterns is refined by fitting the calculated
powder pattern to the observed one by a nonlinear least-squares method. In other words, the
sum of weighted squares of residuals

Spxq “

N
ÿ

i“1

wi ryi ´ fipxqs
2 (2.1)

is minimized by refining x successively. In the above equation, i is the step number, N is the
total number of data points, wi is the statistical weight based on counting statistics, yi is the
observed intensity, and fipxq ” fp2θi;x1, x2, x3, ¨ ¨ ¨xnq is the calculated intensity at a diffraction
angle of 2θi.

Strictly speaking, each observation should be assigned a statistical weight

wi “
1

σ2pyiq ` σ2pBiq
, (2.2)

where σ2 is the variance of each physical quantity, and Bi is the observed background intensity [29].
Since Bi cannot be determined from some experimental values, σ2pBiq is usually set arbitrarily
at zero:

wi “
1

σ2pyiq
. (2.3)
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This rough approximation may cause some problems in Rietveld refinement from synchrotron
X-ray powder diffraction data measured by the Debye–Scherrer method using glass capillaries
owing to the high background with humps arising from short-range order in the amorphous
material.

In addition to yi, its error, σpyiq, is supposed to be determined on use of one-dimensional
and two-dimensional detectors to collect diffraction intensities at different points simultaneously.
Nevertheless, only yi’s are usually recorded in files where diffraction data are recorded because
of difficulties in estimating σpyiq’s. In such cases, we are obliged to evaluate σpyiq from yi by a
simple equation,

σpyiq “
?
yi, (2.4)

which is, however, suitable only for a single detector such as a scintillation counter. The use
of Eq. (2.4) inevitably leads to the underestimation of σpyiq and thus the overestimation of wi

because of error propagation and systematic errors, influencing results of Rietveld refinement
more or less.

When two or more counts are recorded at the same angle, as is the case where n detectors
are employed, we use the mean count with a variance of yi{n. The weight to be multiplied in
this case is wi « n{yi.

The model function fipxq contains lattice and structure parameters as a part of independent
variables, x; details of this very complex function will be described in 2.5. Because lattice
and structure parameters are refined from the whole diffraction pattern in the least-squares
calculation, maximum structural information can be directly extracted from the powder pattern
without any pre-processing.

Figure 2.1 exemplifies the result of a Rietveld refinement for Sr9In(PO4)7 (space group: R3c;
a = 10.439Å and c = 37.375Å) from synchrotron X-ray powder diffraction data (n = 20504)
measured at a wavelength, λ, of 0.85001Å [30]. The solid line is calculated intensities, and small
crosses superimposed on it are observed intensities. Differences between observed and calculated
intensities are shown by a line appearing at the bottom. Tick marks below the profile indicate
the peak positions of all allowed Bragg reflections. The number of possible Bragg reflection that
appeared between 2.5˝ and 64˝ was as many as 2627, and that of refinable parameters including
2 lattice and 88 structure parameters was 116.

All the Rietveld-refinement programs including RIETAN-FP are capable of calculating only
fipxq’s (i “ 1, 2, 3, ¨ ¨ ¨n) and output a text file to plot the resulting powder-diffraction pattern;
such a feature is called simulation of powder-diffraction patterns.

2.4 Development and Spread of the Rietveld Method

The above idea is very simple but was a creative achievement that seemed impossible until it was
actually tried and confirmed to be effective by Rietveld [31] in 1967. He originally devised it for
the analysis of constant-wavelength neutron-powder data (he was a researcher at a reactor center
at Petten in the Netherlands). Since then, many neutron-diffraction data have been measured
using reactor neutron sources and analyzed with a Fortran program developed by Rietveld, and
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Figure 2.1: Observed, calculated and difference patterns resulting from Rietveld analysis from
synchrotron X-ray powder diffraction data of Sr9In(PO4)7

its extended version enabling us to refine anisotropic atomic displacement parameters. Up to
1977 the number of crystal and magnetic structures analyzed by this method reached as high
as 172 [32]. In that year, Malmros and Thomas [33] first applied the Rietveld method to the
analysis of X-ray diffraction data. Many researchers made this pioneer work an occasion to start
studying Rietveld analysis from X-ray powder-diffraction data.

The so-called two-stage method proposed by Will [34] may be an alternative to the Rietveld
method. This methodology generally gives more reliable standard uncertainties of structure
parameters (see 4.2) and more meaningful reliability indices (see 4.3) than Rietveld analysis.
However, as its name implies, structure refinement comprising (a) the determination of observed
integrated intensities and (b) refinement of structure parameters from the resulting observed
integrated intensities are more troublesome than the single stage method (Rietveld method). In
fact, Will’s method is no longer used widely.

The structural information that can be extracted from powder-diffraction data increases
markedly as the resolution is enhanced because the overlapping of reflections is diminished. In
any experimental system with a high intrinsic resolution, it is always possible to trade intensity
for resolution. Synchrotron radiation facilities and pulsed-spallation-neutron sources built in
several countries made it possible to collect high-resolution powder-diffraction data over relatively
short periods, and opened paths to structure refinements as good as those by the single-crystal
method.

Structure refinement according to the procedure that Rietveld developed had been referred to
as several different terms such as profile refinement, profile fitting, and pattern-fitting structure
refinement (PFSR). In 1982, the International Union of Crystallography (IUCr) adopted Rietveld
analysis/method/refinement as the formal technical terms [35]. These names should be used
when reporting the results obtained by this method.
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2.5 Model Function

In angle-dispersive powder diffraction, the observed intensity, yi, at a particular step, i, is modeled
by the calculated intensity, fipxq, which is the sum of contributions from Bragg reflections plus
background correction ybp2θiq:

fipxq “ SRpθiqApθiqDpθiqs
ÿ

K

mK |F phKq|2PKLpθKqGp∆2θiKq ` ybp2θiq, (2.5)

where SRpθiq = correction factor for surface roughness, Apθiq = absorption factor (transmission
coefficient), Dpθiq = correction factor for the constant irradiation width, s = scale factor for the
particular phase, K = reflection number, mK = multiplicity, F phKq = structure factor, hK =
reflection indices hkl, PK = correction factor for preferred orientation, LpθKq = Lorentz and
polarization factors (the polarization factor is unnecessary in neutron diffraction), θK = Bragg
angle, and Gp∆2θiKq ” Gp2θi ´ 2θKq = profile function. The sum with respect to K in Eq. (2.5)
must be carried out over all the Bragg reflections contributing to the net intensity at the ith step.

For convenience, Eq. (2.5) was formulated for a pure sample containing no impurities. When
dealing with multi-phase samples, different scale factors have to be assigned to all the crystalline
phases. Accordingly, s

ř

K mK |F phKq|2PKLpθKqGp∆2θiKq in the first term of the right-hand
side of Eq. (2.5) must be further summed up with respect to all the phases (j = 1, 2, .....) while
SRpθiqApθiqDpθiq and ybp2θiq are independent on all the phases:

fipxq “ SRpθiqApθiqDpθiq
ÿ

j

sj
ÿ

K

mjK |FjphKq|2PjKLpθKqGjp∆2θiKq ` ybp2θiq. (2.6)

The multiplicity, mjK , contains subscript j because a different set of multiplicities is given to
each Laue class [36]. Note that the Lorentz–polarization factor, LpθKq, is simply a function of
θK .

If microabsorption is negligible, mass fractions of constituent phases can be determined from
final scale factors, sj , refined in Rietveld analysis, using a simple equation, Eq. (7.1), linear with
respect to the scale factors [37, 38] (see Chap. 7). The content of amorphous components is
obtainable by addition of a crystalline internal standard material (see 7.3). Thus, the Rietveld
method is now widely used as an important means for quantitative analysis by X-ray and neutron
powder diffraction. One of the most important industrial applications is compositional analyses
of clinker minerals in cement companies.

While lattice parameters are contained in θK , structure parameters are included in F phKq.
F phKq consists of two parts: the crystal-structure factor (see 3.5), F phK , cryst.q, and the
magnetic-structure factor (see 3.6), F phK ,magn.q:

|F phKq|2 “ |F phK , cryst.q|2 ` |F phK ,magn.q|2. (2.7)

The second term in the right-hand side of this equation is required in neutron diffraction only
when compounds containing magnetic atoms such as Cr, Mn, Fe, Co, and Ni exhibit magnetic
scattering in addition to nuclear scattering. It should be pointed out that neutron diffraction is
the only experimental means to determine the direction and magnitude of a magnetic moment
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for each magnetic-atom site. With RIETAN-FP, collinear magnetic structures can be analyzed
relatively easily.

The profile shapes of individual Bragg reflections need to be approximated by appropriate
profile functions Gp∆2θiKq. The profile function is primarily a function symmetric with respect
to the peak position (see 3.9). The symmetric profile function is made asymmetric according to
some procedures (see 3.10). RITEAN-FP supports an original feature of partial profile relaxation
whereby the fit between observed and calculated patterns is improved more or less; this elaborate
and effective technique will be described in 4.4.

Details of functions and factors contained in the right side of the model function (2.5) will
be described in detail in Chap. 3, where subscript j for multi-phase samples are omitted for
simplicity.

The reliability of results for Rietveld analysis depends on how fipxq can approach observed
intensities; a reasonable structural model, good fits between observed and calculated diffraction
patterns and backgrounds, and negligible effects of preferred orientation and coarse particles are
required to acquire reliable results.
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Chapter 3

FUNCTIONS AND FACTORS IN
THE MODEL FUNCTION

3.1 X-Ray Wavelengths

In this chapter, wavelengths of characteristic X rays will be first described since they are
indispensable for evaluation of Bragg angles, θK , lattice-plane spacings, dK , and other physical
quantities. Table 3.1 lists experimentally measured wavelengths of K-emission lines for six
characteristic X rays [39] used in RIETAN-FP. For the CuKβ radiation (Kβ1 + Kβ3), a single
wavelength of 1.392 234Å is given [39, 40]. It should be noted that peak positions in the line
position and line shape standard reference material, SRM 640e (silicon powder), were computed
with the wavelength of 1.540 592 9Å (see the certificate of SRM 640e). Unfortunately, parts
of Rietveld-analysis programs adopt obsolete values of wavelengths, which necessarily gives
less-accurate lattice parameters refined in whole-pattern fitting.

Table 3.1: Wavelengths, λ/Å, of K-emission lines for representative characteristic X rays

Symbol Kα1 Kα2 Kβ

Ag 0.559 421 78 0.563 813 1
Mo 0.709 317 15 0.713 607
Cu 1.540 592 9 1.544 427 4 1.392 234
Co 1.788 996 1.792 835
Fe 1.936 041 1.939 973
Cr 2.289 726 2.293 651

3.2 Surface-Roughness Factor

In the Bragg–Brentano geometry, the surface of a flat-plate sample must be flat enough; otherwise,
the sample itself absorbs parts of diffracted X-ray beams. As can be understood intuitively,
this effect becomes more pronounced with increasing linear attenuation coefficient, µ, (see 3.3)
and decreasing 2θ. Needless to say, the surface-roughness factor is not required for neutron
powder diffraction and synchrotron X-ray powder diffraction. In parallel-beam optics including
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those used in synchrotron X-ray powder diffraction, surface roughness does not affect observed
intensities.

The following five surface-roughness factors, where p, q, rs, t, and S are surface-roughness
parameters to be refined by a least-squares method, were built into RIETAN-FP.

Combination model [41]

SRpθiq “ p1 ´ rsq
”

1 ´ t
´

θi ´
π

2

¯ı

` rs

„

1 ´ p expp´qq ` p exp

ˆ

´
q

sin θi

˙

, (3.1)

which is a linear combination of Eqs. (3.2) and (3.3) in a p1 ´ rsq:rs ratio.

Model of Sparks et al. [42]

SRpθiq “ 1 ´ t
´

θi ´
π

2

¯

. (3.2)

Model of Suortti [43]

SRpθiq “ 1 ´ p expp´qq ` p exp

ˆ

´
q

sin θi

˙

. (3.3)

This straight-line model is valid only for the simplest cases where the intensity reduction at low
angles is less than 1–2%.

Model of Pitschke et al. [44, 45]

SRpθiq “ 1 ´ pqp1 ´ qq ´
pq

sin θi

ˆ

1 ´
q

sin θi

˙

. (3.4)

Model of Sidey [46]

SRpθiq “

ˆ

θi
90

˙S{θi

“ exp

„

S

θi
ln

ˆ

θi
90

˙

,

(3.5)

where θi is given in degrees. Equation (3.5) serves as a practical replacement for Eqs. (3.1), (3.3),
and (3.4), with which procedures of Rietveld analysis become very complicated as a result of
high correlations between the refinable parameters, p and q, in addition to correlations with the
scale factor, atomic displacement parameters, and occupancies [46].

In an input file, hoge.ins, of RIETAN-FP, four parameters, q0–q3, are input as follows:

1. Combination model [41]: q0 “ p, q1 “ q, q2 “ rs, and q3 “ t.

2. Model of Sparks [42]: q0 “ q1 “ q2 “ 0 and q3 “ t.

3. Model of Suortti [43]: q0 “ p, q1 “ q, and q2 “ q3 “ 0.

4. Model of Pitschke et al. [44, 45]: q0 “ p, q1 “ q, and q2 “ q3 “ 0.

5. Model of Sidey [46]: q0 “ q1 “ q2 “ 0 and q3 “ S.

Of course, refinement identifiers, ID(I), of parameters fixed at 0 must be 0.
The reasonable range of S is 0 ď S ď 0.15. If S “ 0 then SRpθiq “ 1 over the whole 2θ range.

If S “ 0.15, the intensity reduction at θ “ 2˝ is ca. 25%.
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CHAPTER 3. FUNCTIONS AND FACTORS IN THE MODEL FUNCTION

3.3 Absorption Factor

The reduction in the intensity of a reflection from a uniform beam owing to absorption is given
by the absorption factor (transmission coefficient)

Apθiq “
1

V

ż

expp´µT q dV, (3.6)

where µ is the linear attenuation coefficient, T is the sum of the path lengths for the incident
and diffracted beams, and the integration is over the volume, V , of the crystal [47].

3.3.1 Bragg–Brentano geometry

No absorption factor is required in Bragg–Brentano-type X-ray powder diffraction using flat-plate
samples. The parafocusing geometry has a merit that Apθiq is inversely proportional to only µ.
That is,

Apθiq “
1

2µ
(3.7)

regardless of 2θi because plate samples are used which are at the same angle to the incident and
diffracted beams.

3.3.2 Debye–Scherrer geometry

The Debye–Scherrer geometry is usually adopted in synchrotron X-ray and neutron powder
diffraction experiments using glass capillary tubes and cylindrical containers (usually vanadium),
respectively. Both of them are regarded as cylinders, whose Apθiq values are tabulated in Table
6.3.3.2 [47]. Ida [48] proposed a highly efficient method for numerical calculation of Apθiq for
cylinders. In his method, the Gauss–Legendre quadrature is applied to a formula proposed by
Thorkildsen and Larsen [49,50]:

Apµr, θiq “
2

π sin 2θi

ż 2θi

0

ż

π´2θi

0
exp

„

´
2µr sinx cospy ´ θiq

cos θi



sinpx`yq sinpx´y`2θiqdxdy. (3.8)

Apθiq calculated from µ, the radius, r, of the cylinder, and θi by Ida’s procedure using 12ˆ12
terms in the numerical integration gives results with relative errors less than 10´6. Another
approach, which uses Simpson’s method in conjunction with a formula proposed by Dwiggins [51],
proved to be far less efficient than that of Thorkildsen and Larsen.

3.3.3 Transmission specimen method

In this method, e.g., using a Guinier diffractometer, Apθiq is

Apθiq “
t

cos θi
exp

ˆ

´
sa

cos θi

˙

, (3.9)

where t is the powder thickness, and sa is the sum of the products of the absorption coefficients
and thicknesses of the powder and the substrate [52]. The thickness, t, is absorbed into the
scale factor, s, while sa can be obtained just by measuring the direct beam intensity with and
without a sample. Including this correction allows us to obtain more reliable atomic displacement
parameters.
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3.4 Factor to Correct for the Constant Irradiation Width

Dpθiq has to be included in Eq. (2.5) on the use of the Bragg–Brentano geometry where the
irradiation width is kept constant at ls (mm) by changing the width of the divergence slit. Let
ω be the divergence angle (˝) at the lowest diffraction angle, and Rg the radius (mm) of the
goniometer circle, then Dpθiq is expressed as

Dpθiq “
2 tan θi
ω

$

&

%

«

ˆ

Rg

ls cos θi

˙2

` 1

ff
1
2

´
Rg

ls cos θi

,

.

-

(3.10)

[53]. In other optics, Dpθiq is set at unity.

3.5 Crystal-Structure Factor

If the fractional coordinate of jth atom in the unit cell is (xj , yj , zj), its position vector is given
by

rj “ xja ` yjb ` zjc. (3.11)

Let gj be the occupancy (population factor or occupation factor), fj the atomic form factor, and
Tj the Debye–Waller factor (commonly called the temperature factor). From Eqs. (A.17) and
(3.11), we obtain

sK ¨ rj “ hxj ` kyj ` lzj . (3.12)

Then, F phK , cryst.q is formulated as

F phK , cryst.q “
ÿ

j

gjfjTj exp
`

2πisK ¨ rj
˘

“
ÿ

j

gjfjTj exp
“

2πi phxj ` kyj ` lzjq
‰

.
(3.13)

The summation is formally carried out over all the atoms in the unit cell. However, parts of
the summation are actually skipped by full use of space-group symmetry (see 3.5.3), which
accelerates the calculation of structure factors particularly in centrosymmetric space groups and
complex lattices.

Equation (3.13) has to be rewritten to derive actual equations to calculate F phK , cryst.q and
partial derivatives of |F phK , cryst.q| with respect to crystal-structure parameters; for details, see
ref. [54].

3.5.1 Atomic form factor

The atomic form factor is the scattering power of the atom. X rays are scattered by electrons,
and neutrons virtually by atomic nuclei.

Equation to approximate the atomic scattering factor

Let ρprq be the electron density at the position r from the origin, k0 the wave number vector of
the incident wave, and k that of the scattered wave. If electron-density distribution is spherical,
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f0psin θ{λq is expressed as a function of k ´ k0:

f0

ˆ

sin θ

λ

˙

“

ż

atom
ρprq exp r2πi pk ´ k0q ¨ rsdv. (3.14)

That is, f0psin θ{λq is the Fourier transform of the density of free electrons. It is a fundamental
quantity (dimensionless) in X-ray diffraction. In RIETAN-FP, f0psin θ{λq is approximated by an
equation containing eleven coefficients, ai, bi, and c [55]:

f0

ˆ

sin θ

λ

˙

“

5
ÿ

i“1

ai exp

«

´bi

ˆ

sin θ

λ

˙2
ff

` c. (3.15)

These coefficients for 288 neutral atoms and ions are stored in a text file, asfdc (see Table 17.1),
in the RIETAN_VENUS folder. Equation (3.15) is valid for the full range of sin θ{λ from 0 to
6. Sets of nine coefficients compiled in “International Tables for Crystallography,” Vol. C [56]
are no longer utilized because they are unsuitable for approximating f0psin θ{λq in a high-angle
region of 2Å´1 ă sin θ{λ ă 6Å´1. Refer to Table 17.3 when names of chemical species to be
input in hoge.ins are required.

In Fig. 3.1, atomic scattering factors of V, V2`, V3`, and V5` are plotted against sin θ{λ.
It really helps to remember that f0p0q is equal to the number of electrons in the atomic species.
Because differences in f0psin θ{λq among these four chemical species are appreciable only in a
low-angle region, selection of chemical species is not very important in the absence of large-d
reflections.

X-ray dispersion corrections

The absorption edge is located at wavelengths (energies) where the energy of an absorbed photon
corresponds to an electronic transition or ionization potential. When the quantum energy of
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Figure 3.1: Atomic scattering factors of vanadium with four different oxidation states
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the incident radiation becomes smaller than the work required to eject an electron from one or
other quantum states in the absorbing atom, the incident radiation is no longer absorbed by that
state. As λ approaches the absorption edge, λe, of an atom, the atomic form factor, f , changes
with λ because of the interaction between the incident beam and the atom, i.e., the resonant
excitation of core electrons. This phenomenon is referred to as X-ray dispersion. The technical
term ‘anomalous dispersion,’ which often appears in the literature, is never used in this manual
because there is nothing ‘anomalous’ about these corrections [57]. In fact, the X-ray dispersion
is totally predictable.

The atomic form factor in the presence of X-ray dispersion consists of the atomic scattering
factor, f0psin θ{λq, the real and imaginary parts, f 1 ` if2, of the dispersion correction, and the
nuclear Thomson correction [58], fNT:

f “ f0

ˆ

sin θ

λ

˙

` f 1 ` if2 ` fNT (3.16)

with
f 1 “ f1 ` frel ´ Z, (3.17)

where f1 is the real part of the angle-independent atomic-scattering-factor components for
forward scattering, frel is the relativistic correction, and Z is the atomic number [59]. The
nuclear Thomson scattering is small and negative in phase relative to the electric form factor:
f0psin θ{λq ` f 1.

The dispersion corrections, f 1 and f2, of all the elements for characteristic X rays (AgKα,
MoKα, CuKα, CoKα, FeKα, and CrKα radiations) [60] are input from a text file, asfdc (see
Table 17.1), by RIETAN-FP. Nuclear Thomson scattering is neglected on use of the above six
characteristic X-ray radiations.

For CuKβ radiation (λ “ 1.39223Å) and synchrotron X rays, f 1 and f2 are either input
by the user or calculated by RIETAN-FP (see 17.3.10). The CuKβ radiation is sometimes
used instead of CuKα1 at the expense of diffraction intensities since it is obtained by use of a
relatively cheap curved graphite monochromator. The f1 and f2 (“ f2) values of all the elements
up to uranium (Z “ 92) were tabulated as a function of the photon energy (E = 10–30000 eV)
by Henke et al. [61] and have been updated at intervals. The latest tables of Henke et al. are
believed to be the most reliable source of f1 and f2.

Further, Chantler [59] compiled fNT and two kinds of frel: H82 (following the computation
procedure of Cromer–Liberman [62] but omitting the Jensen energy-dependent correction) and
3/5CL (3/5ths of the Cromer–Liberman value). These fNT and frel (3/5CL) values are worthy
of being used by RIETAN-FP.

The f1, f2, frel (3/5CL), and fNT values (in electrons/atom) of the elements with Z ď 92

are recorded together with Z in a binary file, xdc.bin (see Table 17.1), which is placed in the
RIETAN_VENUS folder. On calculation of f 1 and f2, xdc.bin is read by RIETAN-FP, and f1
and f2 at an arbitrary wavelength, λ, are determined by interpolating the f1 and f2 data in
xdc.bin. For convenience, fNT, which is usually neglected in X-ray structure analysis, is included
in f 1. Nevertheless, the user may input f1 ` frel ´ Z as f 1 in hoge.ins, referring to hoge.lst (see
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Figure 3.2: The dependence of f 1, f2, and µm on the wavelength, λ, in
Ni. E is the photon energy.

17.8.1). As described above, tables recorded in xdc.bin cover only a photon-energy region up to 30
000 eV (λ “ 0.413281Å). If synchrotron X-ray powder diffraction data are measured at a larger
photon energy (a shorter wavelength), please refer to other references such as “International
Tables for Crystallography,” Vol. C [60].

The phase of the imaginary term deviates by +90˝ from that of the real one. Near the
absorption edge, the real term, f 1, changes like a very steep valley, and the imaginary term, f2,
stepwise, as Fig. 3.2 illustrates for Ni. This figure was drawn by gnuplot [63] with an xdc macro
of the RIETAN-FP–VENUS assistance environment from data in (1) xdc.gpd, which is output
on specification of NPRINT = 2 in hoge.ins, and (2) mac.tbl (see 17.1). The K absorption
edge of Ni proves to lie at 1.4879Å = 8.3328 keV by viewing a Web page of the University of
Washington.1

Thus, f can be considerably changed by the dispersion effect if the wavelength is set near an
absorption edge in contrast with conventional sources. This phenomenon is utilized to enhance
the contrast of a particular element in synchrotron X-ray diffraction. In general, dispersion
corrections do not depend on 2θ and tend to increase with increasing atomic number and
wavelength.

In addition to f 1 and f2, mass attenuation coefficients, µ{ρ “ µm, are input from mac.tbl
(see Table 17.1) and plotted against λ in Fig. 3.2, which demonstrates that absorption of X rays
increases rapidly in a region of λ slightly smaller than λ at the absorption edge. Fluorescent X
rays also increase in that region. Hence, a graph such as Fig. 3.2 is very useful to estimate levels
of X-ray absorption and fluorescent X rays at certain wavelengths.

Inserting a pair of commands, set table and unset table, into a gnuplot script file, xdc.plt
(see Table 17.1), is useful to obtain a text file, xdc.tbl, storing f 1, f2, and µm vs. λ:

set table "xdc.tbl"
plot 'element.dat' \

every :::0::0 using 1:3 title "{/:Italic=16 f}&{/=8 |}{/=16 \342\200\262}" \

1http://skuld.bmsc.washington.edu/scatter/AS_periodic.html
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with lines linetype 11 linecolor rgbcolor "red", \
'' every :::0::0 using 1:4 title "{/:Italic=16 f}&{/=8 |}{/=16 \342\200\263}" \

with lines linetype 11 linecolor rgbcolor "blue", \
'' every :::1::1 using (0.0123984/$1):2 title "{/:Italic=15 \316\274}_{/=13 m}" axes x1y2 \

with lines linetype 11 linecolor rgbcolor "forest-green"
unset table

Dispersion corrections can be not fixed (as in RIETAN-FP) but refined in an in-house version
of RIETAN-2000 by Xiao [64]. This feature will be useful on the use of a wavelength near the
absorption edge of an element.

Friedel pairs

Friedel’s law holds in centrosymmetric space groups:

|F phq| “ |F ph̄q|, (3.18)

where F phq ” F phK , cryst.q, and h̄ denotes reflection h̄k̄l̄. As Fig. 3.3 illustrates, compounds
belonging to noncentrosymmetric space groups have different |F phq| values for hkl and h̄k̄l̄

reflections (Friedel pair) because of the X-ray dispersion effect [65]. For example, in the case of
orthorhombic space group P222 (No. 16), reflections belonging to a pair of reflection groups,

1. hkl, hkl, hkl, and hkl,

2. hkl, hkl, hkl, and hkl,

have |F ph̄q|’s slightly different from each other. These differences are particularly appreciable in
compounds containing heavy atoms. When dealing with such a compound with RIETAN-FP, the
multiplicity, mK , generated by LAZY PULVERIX [66] is divided by 2, and the |F phK , cryst.q|’s
of hkl and h̄k̄l̄ reflections are individually calculated to raise the accuracy of crystal-structure
factors.

|F phq| ‰ |F ph̄q|. (3.19)

If the dispersion effect were included in FophKq, electron densities, ρ, resulting from Fourier
synthesis or MEM analysis would become meaningless complex numbers. Then, contributions of
X-ray dispersion, viz. ∆F phq (red lines) in Fig. 3.3, must be subtracted from observed structure
factors to calculate ρ’s correctly [67].

Further attention must be paid to the origin in parts of noncentrosymmetric space groups
where no origin is assigned to a definite position; refer to item 11 in 17.3.14 for details.

Coherent scattering length

Scattering of neutrons by the atomic nucleus is regarded as that by a point with a negligible
size because the size of the atomic nucleus has an order of 1 fm, which is much smaller than the
wavelength, λ, of neutrons (ca. 105 fm). The scattered wave is, therefore, a spherical one with
the atomic nucleus at the center, having the wave function ϕ:

ϕprq “ ´
bc
r
exp

ˆ

2πir

λ

˙

, (3.20)
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Figure 3.3: The relationship between different components of the
structure amplitude in a Friedel pair when there are anomalously
scattering atoms in the crystal structure. Aphq: the real part of the
structure factor F phq, Bphq: the imaginary part of F phq, α: phase
angle

where r is the distance from the atomic nucleus, and bc is the coherent scattering length which
corresponds to f0psin θ{λq in X-ray diffraction.

Differences in scattering power between X rays and neutrons

The difference in the mechanism of elastic scattering described above leads to the following
differences in scattering power between the atomic form factor, f0psin θ{λq, for X rays and the
coherent-scattering length, bc, for neutrons [24] :

1. As the number of electrons for an atom or an ion is increased, f0psin θ{λq increases
monotonously. On the other hand, bc changes irregularly and takes positive or negative
values, depending on the atomic nucleus (isotope), as illustrated in Fig. 3.4.

2. In X-ray diffraction, f0psin θ{λq decreases monotonously with increasing sin θ{λ whereas in
neutron diffraction bc remains constant, regardless of sin θ{λ.

3. Absorption of X rays is generally far higher than that of neutrons with absorption coefficients
104–105 times as much as those for neutrons. Excitations with much higher absorption of
neutrons include shielding materials B (as B4C), Cd, and Gd (as Gd2O3).

In general, inner shell electrons contribute to f0psin θ{λq over all the sin θ{λ region whereas
outer shell electrons contribute only in a small sin θ{λ region. The invariant bc value arises from
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Figure 3.4: Coherent atomic scattering lengths for thermal neutrons
plotted as a function of atomic weight

the fact that it is the Fourier transform of the nuclear density whose distribution is similar to a
δ function (spot-like). The intensities of reflections with large Q (small d) are relatively higher
in neutron diffraction than in X-ray diffraction because of the constancy of bc. This tendency
is favorable for collecting information about those atoms with small atomic numbers because
they display marked thermal motion and their f0psin θ{λq values decrease considerably in high-Q
regions.

The first characteristic of neutron diffraction is utilized for the analysis of compounds with a
combination of constituent atoms which is not suitable for X-ray diffraction; that is,

1. O (atomic No.: 8, bc = 5.803 fm) has a bc value 70% as large as that of Bi (atomic No.: 83, bc
= 8.532 fm); the bc values of H (bc “ ´3.7390 fm), Li (bc “ ´1.90 fm), Ti (bc “ ´3.370 fm),
and Mn (bc “ ´3.750 fm) are negative; bc changes irregularly with increasing atomic weight.

2. Evidently, neutron diffraction is very useful for refinement of the structure parameters for
light elements (e.g., D, Li, N, and O) in compounds containing heavy elements as principal
constituents and for distinguishing elements (e.g., N and O, Mn and Fe, Co and Ni, and
Ba and La) with comparable atomic weights.

3. Two atoms with bc values close to each other may have considerably different f0psin θ{λq

values, e.g., O and Ba.

Bear in mind that asfdc contains data for three popular isotopes: 2H (‘D’), 7Li (‘Li7’), and
11B (‘B11’), where the strings in the parentheses denote names of the real chemical species (see
17.3.9). Compounds containing these isotopes are often used in neutron diffraction experiments
to minimize absorption of neutrons.
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3.5.2 Two thermal-vibration models

Let Bj and Uj be two types of isotropic atomic displacement parameters, and βj the anisotropic
atomic displacement tensor defined as

βj “

¨

˚

˝

β11j β12j β13j
β12j β22j β23j
β13j β23j β33j

˛

‹

‚

. (3.21)

Then, the thermal displacement of atom j is formulated in two different ways, that is,

Tj “ exp

«

´Bj

ˆ

sin θK
λ

˙2
ff

“ exp

«

´8π
2Uj

ˆ

sin θK
λ

˙2
ff (3.22)

for isotropic thermal motion and

Tj “ exp
`

´rh ¨ βj ¨ h
˘

(3.23)

with
rh “

´

h k l
¯

(3.24)

and

h “

¨

˚

˝

h

k

l

˛

‹

‚

; (3.25)

hereinafter, the tilde denotes the transposed matrix.
Because rh ¨βj ¨h ą 0 for all h, the following conditions have to be satisfied among β11j , β22j ,

¨ ¨ ¨ after Rietveld refinement:
β11j ą 0, (3.26)

β22j ą 0, (3.27)

β33j ą 0, (3.28)

β11jβ22j ` β22jβ33j ` β33jβ11j ´ β212j ´ β213j ´ β223j ą 0, (3.29)

detβ ą 0, (3.30)

where det denotes the determinant. Unless anisotropic atomic displacement parameters satisfy
them because of low-quality diffraction data, isotropic ones should be refined. In general, the
refinement of anisotropic atomic displacement parameters from X-ray powder-diffraction data is
fairly difficult because of rapid decreases in f0psin θ{λq with increasing sin θ{λ.

Bj and Uj are related to the mean square displacement,
@

u2j
D

, along the direction perpendicular
to the reflection plane with

Bj “ 8π
2Uj

“ 8π
2
@

u2j
D

.
(3.31)

Figure 3.5 gives isotropic temperature factors, T , plotted against sin θ{λ for five different
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Figure 3.5: Isotropic temperature factor versus sin {λ for five
different B parameters

isotropic atomic displacement parameters, B. T decreases more rapidly with increasing B. The
order of

?
U lies between 0.05Å and 0.2Å (B lying between 0.2 and 3.16Å2) in typical inorganic

compounds whereas it reaches 0.5Å (B « 20Å2) for some organic crystals [68]. The consequence
of this is to make the electron or nuclear density of the atom more diffuse, reducing the ability
for scattering X rays or neutrons with increasing values of sin θ{λ.

Since rh ¨ βj ¨ h is expressed as

rh ¨ βj ¨ h “

´

h k l
¯

¨

˚

˝

β11j β12j β13j
β12j β22j β23j
β13j β23j β33j

˛

‹

‚

¨

˚

˝

h

k

l

˛

‹

‚

, (3.32)

Eq. (3.23) is rewritten as

Tj “ exp
“

´
`

h2β11j ` k2β22j ` l2β33j ` 2hkβ12j ` 2hlβ13j ` 2klβ23j
˘‰

, (3.33)

which is the simplest expression of Tj . Other two representations of Tj ,

Tj “ exp
“

´2π
2

`

h2a˚2U11j`k2b˚2U22j`l2c˚2U33j`2hka˚b˚U12j`2hla˚c˚U13j`2klb˚c˚U23j

˘‰

,

(3.34)

Tj “ exp

„

´
1

4

`

h2a˚2B11j`k2b˚2B22j`l
2c˚2B33j`2hka˚b˚B12j`2hla˚c˚B13j`2klb˚c˚B23j

˘



,

(3.35)
may also be used. Equations (3.33), (3.34), and (3.35) contain the following three sets of
anisotropic atomic displacement parameters, respectively [69]:

1. β11j , β22j , β33j , β12j , β13j , and β23j ,

2. U11j , U22j , U33j , U12j , U13j , and U23j ,

3. B11j , B22j , B33j , B12j , B13j , and B23j .
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The β parameters are dimensionless whereas the U and B parameters have a dimensional formula
of L2. The U parameters are related to the corresponding B ones in a similar way as Eq.
(3.31) for isotropic thermal motion. It is the elements of the atomic displacement tensor, β11j ,
β22j , ¨ ¨ ¨ , that are actually input, refined, and output in RIETAN-FP due to the conciseness
of Eq. (3.33). Nevertheless, the other set of anisotropic atomic displacement parameters, U11j ,
U22j , , U33j , ¨ ¨ ¨ , should be described in papers, review articles, reports, CIFs (Crystallographic
Information File), etc. because U11j , U22j , and U33j are mean square displacements along a, b,
and c axes, respectively; the shape of each displacement ellipsoid can directly be understood with
them. Further, description of Uj is likewise preferred to that of Bj on the use of an isotropic
thermal-vibration model.

On refinements of anisotropic atomic displacement parameters, βj , certain parameters will
be constant or linearly related to others, which depends on site symmetry. Note that symmetry
conditions described in Ref. [70,71] are valid only for the first equivalent positions described in
“International Tables for Crystallography,” Vol. A [72] and that a center of symmetry must be
placed at the origin if any.

On the refinement of β11j , β22j , ¨ ¨ ¨ , equivalent isotropic atomic displacement parameters,
Beq and Ueq are calculated from them, a˚, b˚, c˚, and the metric tensor, G, of the direct cell
(see Appendix A) [73,74]:

Beq “ 8π
2Ueq (3.36)

with

Ueq “
1

3

ÿ

i

ÿ

j

Uija
˚
i a

˚
jai ¨ aj

“
1

3

“

U11 paa˚q
2

` U22 pbb˚q
2

` U33 pcc˚q
2

` 2U12a
˚b˚ab cos γ ` 2U13a

˚c˚ac cosβ ` 2U23b
˚c˚bc cosα

‰

.

(3.37)

Since a˚ “ 1{a, b˚ “ 1{b, and c˚ “ 1{c in orthogonal systems (orthorhombic, tetragonal, and
cubic), it follows that

Ueq “
1

3

`

U11 ` U22 ` U33

˘

. (3.38)

RIETAN-FP outputs all of the above atomic displacement parameters after a list of final
structure parameters with their standard uncertainties.

3.5.3 How to deal with equivalent positions

A text file, spgra, (see 17.1) contains coordinates of equivalent positions of 230 space groups;
those of inverted positions (an inversion center at the origin) and translated ones (complex
lattices) are not included in spgra. These coordinates for the space group of a compound to be
analyzed in Rietveld refinement are used on calculation of structure factors.

The summations
ř

j in Eqs. (3.13) and (3.49) are actually not carried out straightforwardly
in RIETAN-FP. Only fractional coordinates, xj (j: site number), of atoms in the asymmetric
unit need to be input in RIETAN-FP, which reads in coordinates of equivalent positions from
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spgra (see 17.1), converts them into corresponding symmetry operations, i.e., rotation matrices
Rs and translation vector ts. Then, sth equivalent position, xjs, is given by

xs “ Rs ¨ xj ` ts; (3.39)

that is,
¨

˚

˝

xjs
yjs
zjs

˛

‹

‚

“

¨

˚

˝

R11s R12s R13s

R21s R22s R23s

R31s R32s R33s

˛

‹

‚

¨

˚

˝

xj
yj
zj

˛

‹

‚

`

¨

˚

˝

t1s
t2s
t3s

˛

‹

‚

“

¨

˚

˝

R11sxj `R12syj `R13szj ` t1s
R21sxj `R22syj `R23szj ` t2s
R31sxj `R32syj `R33szj ` t3s

˛

‹

‚

.

(3.40)

Components in Rs are all 0 or ˘1 while those in ts are 0, n{2, n{4, and n{6 (n: integer) with
0 ď ts ă 1. All the off-diagonal terms are zero in orthorhombic, monoclinic, and triclinic systems.
The fractional coordinates of (part of) atoms outside the asymmetric unit are evaluated by
applying these symmetry operations to those of the atoms inside the asymmetric unit. That
is, the coordinates, xjs, yjs, and zjs, of the sth equivalent position are related to those of the
atoms in the asymmetric unit: xj , yj , and zj . Inverted positions are not included in the above
calculations in the case of centrosymmetric space groups.

In actual calculation of the structure factor, F phKq, and the partial derivatives of F phKq

with respect to structure parameters, the cosine term,

Csjh “ cos 2π
`

rhs ¨ xj ` ts
˘

, (3.41)

and the sine term,
Ssjh “ sin 2π

`

rhs ¨ xj ` ts
˘

, (3.42)

with

hs ” h ¨ Rs

“ rRs ¨ h
(3.43)

and
ts “ rts ¨ h (3.44)

are used to accelerate calculation of fractional coordinates for equivalent positions at the expense
of tiny memory consumption [54]. Further, overlaps of equivalent positions are checked in advance
from initial fractional coordinates so that only one of overlapped atoms may be included in the
calculation of F phKq and its derivatives with respect to structure parameters.

After calculating the partial structure factor in the above way, it is further multiplied by a
coefficient in Table 3.2 in space groups with complex lattices and/or inversion centers at the
origin (centrosymmetric) [54].

A point, j, on a symmetry element containing no translation is referred to as a special position.
For special positions, part of structure parameters may be fixed, and linear equality constraints
may be imposed between part of them (see 17.3.16). For example, the following rules hold for
fractional coordinates in structure refinement:
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Table 3.2: Lattice types and coefficients for structure factors

P A, B, C, I F R

Centrosymmetric 2 4 8 6
Noncentrosymmetric 1 2 4 3

• For an atoms on the center of symmetry, all the coordinates are fixed.

• For an atom on a rotation axis, only coordinates along the axis are variable.

• For an atom on a mirror plane, only two coordinates on the plane are variable.

The number of equivalent positions, i.e., the site multiplicity, for a special potion is equal
to that of general equivalent positions divided by an integer, nj . Not gj but gj{nj “ gjˆ(site
multiplicity)/(number of general equivalent positions) is usually refined in many structure-
refinement programs only to keep them simple. For example, the multiplicity of the general
equivalent position in space group Fd3̄m (No. 227) is 192. Then, nj “ 2 for the 96h site (0, y,
ȳ), nj “ 6 for the 32e site (x, x, x), and nj “ 24 for the 8a (1/8, 1/8, 1/8) site in the case of
origin choice 2 with the center of symmetry at the origin.

RIETAN-FP adopts a more sophisticated approach to the refinement of gj . After the overlap
of equivalent positions has been checked for every site, only one of overlapped positions is
arbitrarily selected to minimize the time to calculate Eq. (3.13), particularly in space groups
where the numbers of equivalent positions are relatively large. Consequently, gj , can be refined
straightforwardly.

3.6 Magnetic-Structure Factor

Magnetic scattering is caused by interaction between the magnetic moment of atoms with unpaired
electrons in 3d, 4d, 4f , and 5f orbitals and that of the neutron. Neutron diffraction is the only
means of determining the direction and magnitude of a magnetic moment for each magnetic-atom
site and, hence, have a firm footing in experimental research in magnetism [75,76]. RIETAN-FP
allows us to analyze simple collinear magnetic structures where the magnetic moments of all the
magnetic-atom sites are aligned along the same direction with Shirane’s equations [77].

3.6.1 Magnetic-structure parameters

Let us define the magnetic interaction vector, q, as

q “ κ̂ ˆ pµ̂ ˆ κ̂q

“ µ̂ ´ pκ̂ ¨ µ̂qκ̂
(3.45)

with
|q| “ sinα, (3.46)

where µ̂ and κ̂ are, respectively, unit vectors parallel to the scattering vector and the magnetic
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(hkl)

μ 

q

sK

j

j

Figure 3.6: The magnetic interaction vector, qj , which is the
component of µj perpendicular to the reciprocal-lattice vector, sK

moment, and α is the angle between µ̂ and κ̂ [78]. A red arrow in Fig. 3.6 on the phklq plane is
the magnetic interaction vector of a magnetic atom at site j.

In the nuclear-scattering case, the structure amplitude, F phK , cryst.q, is computed by sum-
ming up the contributions from all the atoms in the unit cell as formulated in Eq. (3.13). When
coherent magnetic scattering occurs, the magnetic structure amplitude, F phK ,magn.q, is likewise
represented as a vector γ is µn{µN = (magnetic moment of the neutron)/(nuclear magneton), e
is the elementary charge,

F phK ,magn.q “
ÿ

j

gjpjqjTj exp
“

2πi phxj ` kyj ` lzjq
‰

(3.47)

with
pj “

ˆ

γe2

2mec2

˙

gJfjpmagn.q, (3.48)

where pj is the magnetic scattering length, me is the electron mass, c is the light speed, g is
the Landé splitting factor (see 3.6.3), J is the total angular momentum quantum number, and
fjpmagn.q is the magnetic form factor for unpaired electrons (see 3.6.3) [79]. The summation,
Σj , in Eq. (3.47) is carried out over all the magnetic atoms in the unit cell. The intensity of the
magnetic contribution to the hkl reflection is proportional to |F phK ,magn.q|2 as expressed in
Eq. (2.7).

Let cos η be the direction cosine between the scattering vector (see A.3) , QK , and magnetic
moment, sj the magnitude of the magnetic moment µj , then |F phK ,magn.q| for the collinear
magnetic structure is greatly simplified in comparison with the generalized form of F phK ,magn.q,
i.e., Eq. (3.47):

|F phK ,magn.q| “
γe2

2mec2

b

1 ´
@

cos2 η
D

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

gjsjfjpmagn.qTj exp
“

2πi phxj ` kyj ` lzjq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.49)

where
@

cos2 η
D

is the average of cos2 η values for all the equivalent phklq planes, and sj has either
a positive or negative value, depending on the direction of µj .
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Table 3.3: Values of
@

cos2 η
D

in collinear magnetic structures

Crystal system
@

cos2 η
D

Cubic 1
3

Hexagonal
”

1
2

`

h2 ` k2 ` hk
˘

a˚2 sin2 ϕ` l2c˚2 cos2 ϕ
ı

d2

ϕ: angle between µj and the c axis

Rhombohedral
“

2pn´ rq p1 ´ cosα˚q sin2 ϕ` pn` 2rq p1 ` 2 cosα˚q cos2 ϕ
‰

1
3a

˚2d2

n “ h2 ` k2 ` l2

r “ hk ` kl ` lh

ϕ: angle between µj and the [111] axis

Tetragonal
”

1
2

`

h2 ` k2
˘

a˚2 sin2 ϕ` l2c˚2 cos2 ϕ
ı

d2

ϕ: angle between µj and the c axis

Orthorhombic
`

h2a˚2 cos2 ϕa ` k2b˚2 cos2 ϕb ` l2c˚2 cos2 ϕc

˘

d2

ϕa: angle between µj and the a axis
ϕb: angle between µj and the b axis
ϕc: angle between µj and the c axis

Monoclinic
”

pha˚ cosϕa˚ ` lc˚ cosϕc˚q
2

` pkb˚ cosϕb˚q
2
ı

d2

ϕa˚ : angle between µj and the a˚ axis
ϕb˚ : angle between µj and the b˚ axis
ϕc˚ : angle between µj and the c˚ axis

Triclinic pha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚q
2 d2

ϕa˚ : angle between µj and the a˚ axis
ϕb˚ : angle between µj and the b˚ axis
ϕc˚ : angle between µj and the c˚ axis

Table 3.3 lists equations to calculate
@

cos2 η
D

for seven crystal systems. Equations for
the cubic, hexagonal, rhombohedral, tetragonal, and orthorhombic systems were derived by
Shirane [77] while those for the monoclinic and triclinic systems by N. Yamada [80] (see Appendix
B).

Magnetic-structure parameters refined in Rietveld analysis are sj and

1. ϕ (hexagonal, rhombohedral, and tetragonal),

2. ϕa, ϕb, and ϕc (orthorhombic),

3. ϕa˚ , ϕb˚ , and ϕc˚ (monoclinic and triclinic).

The Rietveld analysis of a magnetic material from neutron powder-diffraction data necessarily
leads to the partial loss of its magnetic crystal structure. For example, we can obtain no
information on the direction of the magnetic moment in the cubic system where

@

cos2 η
D

“ 1{3;
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on the other hand, components along the a, b, and c axes can be determined in the orthorhombic
system.

Before starting to refine magnetic-structure parameters, trial and error concerning the
direction and magnitude of µj in the simulation mode (NMODE = 2) is highly recommended. In
the simulation of powder diffraction patterns, pay attention to the fact that only the component
of µj perpendicular to the reciprocal-lattice vector, sK , contributes to magnetic scattering, as
illustrated in Fig. 3.6. In other words, magnetic scattering disappear when the direction of the
magnetic moment coincide with that of the scattering vector.

3.6.2 Limitations on the analysis of magnetic structures

If crystallographically equivalent sites of magnetic atoms are nonequivalent to each other when
taking spin directions into consideration, special treatment is required. For example, an antifer-
romagnetic oxide LaMnO3 (space group: Pbnm) shows reflections such as 001 and 003, which
are absent in its X-ray diffraction pattern. Then, we must select a space group consistent with
the symmetry of the magnetic structure and impose constraints on appropriate crystal-structure
parameters.

We must sometimes analyze collinear magnetic structures whose symmetry cannot be repre-
sented by crystallographic space groups. Such a case is not rare in view of the fact that even
in ferromagnets, magnetic-symmetry groups are as many as 275, which is larger than 230 for
crystallographic space groups. A sophisticated technique to overcome such a difficulty is to
regard that the magnetic material consists of two virtual phases: a nonmagnetic phase with a
crystallographic unit cell and a metallic phase with a magnetic unit cell. Details in this procedure
will be described separately in Chap. 8.

3.6.3 Analytical approximations to the magnetic form factor

An outstanding characteristic of magnetic scattering is its strong dependence on the diffraction
angle, 2θ (lattice-plane spacing, d). Because the magnetic scattering of neutron is caused by
outer electrons such as 3d, 4f, and 5d electrons, the forward scattering is much stronger than the
back-scattering. Interference effects within individual atoms give rise to a magnetic form factor
analogous to the atomic scattering factor in X-ray diffraction.

The form factors used in the calculations of the cross sections for magnetic scattering of
neutrons are defined as

@

jlpkq
D

“

ż 8

0
U2prqjlpkrq4πr2dr, (3.50)

in which Uprq is the radial wavefunction for the unpaired electrons in the atoms, k is the length of
the scattering vector, and jlpkrq is the lth-order Bessel function. RIETAN-FP uses

@

jlpsq
D

(l “ 0

and 2) as magnetic form factors fjpmagn.q [81]. The
@

j0
D

magnetic form factor is calculated
from seven coefficients (A, a, B, b, C, c, and D) in an analytical approximation to

@

j0psq
D

as a
function of s (“ sin θ{λ):

@

j0psq
D

“ A exp
`

´as2
˘

`B exp
`

´bs2
˘

` C exp
`

´cs2
˘

`D. (3.51)
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On the other hand, the
@

j2
D

magnetic form factor is approximated with another type of
Bessel equation:

@

j2psq
D

“ As2 exp
`

´as2
˘

`Bs2 exp
`

´bs2
˘

` Cs2 exp
`

´cs2
˘

`Ds2

“ s2
“

A exp
`

´as2
˘

`B exp
`

´bs2
˘

` C exp
`

´cs2
˘

`D
‰

.
(3.52)

The coefficients, A, a, B, b, C, c, and D, in Eqs. (3.51) and (3.52) are tabulated for the 3d and
4d transition series, the 4f electrons of lanthanoid ions, and the 5f electrons of some actinoid
ions [81].

In the so-called dipole approximation, only the lowest-order spherical harmonics describing
the shape of the ion are used; the electron density is treated spherical. Within the dipole
approximation, the magnetic form factor is given by

fjpmagn.q “
@

j0psq
D

`

ˆ

2

g
´ 1

˙

@

j2psq
D

. (3.53)

Beware of incorrect Eq. (6.1.2.17) in ref. [82]. Let S the spin angular momentum, and L the
orbital angular momentum, then g is given by [78]

g “ 1 `
JpJ ` 1q ` SpS ` 1q ´ LpL` 1q

2JpJ ` 1q
. (3.54)

Intensities of reflections due to magnetic scattering decay rapidly with increasing Q because
of the extreme decrease in fjpmagn.q with Q, which is explained in terms of magnetic scattering
of neutrons by outer shell electrons [78].

3.7 Preferred-Orientation Functions

Preferred orientation should be corrected with a function, PK , which is independent of the
diffraction geometry and applicable to both plate and needle-shaped crystallites. However, a
perfect preferred orientation function applicable to any samples does not exist particularly when
the preferred orientation effect is very marked. The best way to tackle this problem is to reduce
the preferred-orientation effect by preparing the specimen properly.

In general, preferred orientation is negligible when the crystallite size is less than about 3 µm.
Then, the so-called ω (ε) scan [83] is recommended to check whether or not coarse particles are
included in the specimen.

3.7.1 March–Dollase function

Dollase [84] tested several preferred-orientation functions and selected a special case from the more
general description by March [85] as the best preferred-orientation correction. This March-Dollase
function has been implemented in most Rietveld-refinement program as a preferred-orientation
function:

PK “

mK
ÿ

j“1

1

mK

`

r2 cos2 αj ` r´1 sin2 αj

˘´ 3
2 , (3.55)

where r is an adjustable parameter, and αj is the angle between the preferred-orientation vector,
hpa

˚ ` kpb
˚ ` lpc

˚, and the reciprocal-lattice vector, sK , for the jth member of the symmetry-
equivalent set of mK diffraction planes. The summation over mK planes and averaging in Eq.
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(3.55) is required only when the symmetry is cubic, or the preferred-orientation axis is not parallel
to a unique axis. Nevertheless, the summation is alway carried out in RIETAN-FP regardless of
crystal systems or preferred-orientation axes for simplicity.

The March-Dollase function (3.55) displays overall performance good enough for most
structural studies. It conserves scattering matter, thereby allowing its use in the quantitative
analysis of mixtures.

The refinable parameter, r, represents the effective sample compression or extension due to
preferred orientation. Its value depends on both the diffraction geometry and the crystallite
shape:

(a) Cylindrical sample (e.g., neutron powder diffraction using vanadium cells)
Plate crystallite r ą 1

Needle-shaped crystallite r ă 1

(b) Flat-plate sample (e.g., Bragg-Brentano geometry)
Plate crystallite r ă 1

Needle-shaped crystallite r ą 1

For samples exhibiting no preferred orientation, r is equal to one (not zero!).

3.7.2 Modified March–Dollase function

To deal with up to three different preferred-orientation vectors, we added a modified March–
Dollase function [86,87], P 1

K , which is a linear combination of Eq. (3.55):

P 1
K “ f1PKpr1q ` f2PKpr2q ` f3PKpr3q (3.56)

with
f1 ` f2 ` f3 “ 1.

This equation is a special case of a preferred-orientation function described by Pecharsky and
Zavalij [88]: k0 “ 0 and Na “ 3 in Eq. (2.80) of their book.

Let np be the number of preferred-orientation vectors. In the input file, hoge.ins, of RIETAN-
FP, preferred-orientation vectors should be input in the following ways:

np “ 1 : hp “ kp “ lp “ 0 for the second and third vectors

np “ 2 : hp “ kp “ lp “ 0 for the third vector

The six preferred-orientation parameters, f1, r1, f2, r2, f3, and r3, must alway be input in this
order. Then, the following linear constraints are imposed on f1, f2, and f3:

np “ 1 : f1 “ 1,

np “ 2 : f2 “ 1 ´ f1,

np “ 3 : f3 “ 1 ´ f1 ´ f2.

Hence, no linear constraints corresponding to them are required in hoge.ins. Further, f2, r2,
f3 and r3 should be set at 0 when np “ 1 while f3 and r3 should be set at 0 when np “ 2. Of
course, their ID(I)’s are also set at 0.
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3.7.3 Spherical-harmonics approach

Ahtee et al. [89] and Järvinen [90] proposed preferred-orientation functions where the preferred-
orientation effect is modeled by expanding the orientation distribution in spherical harmonics.
They implemented the model in their Rietveld-refinement program where the Voigt function
was used as the profile function. In tests using samples with textures known from pole-figure
measurements, they found that the corrections obtained from the refinement agreed very closely
with the measured values.

If satisfactory results could not be obtained with the March-Dollase approach, this more
complex but, in principle, more powerful approach would be worth trying. However, such
multiparameter descriptions may allow pole-density profiles that are physically unrealistic [91],
which is the reason why RIETAN-FP does not support this feature.

3.8 Lorentz and Polarization Factors

The Lorentz and polarization factors are represented by

LpθKq “
1 ´ u` u cos2 2θM cos2 2θK

2 sin2 θK cos θK
, (3.57)

where θM denotes the Bragg angle of the crystal monochromator. In the Bragg–Brentano and
Debye–Scherrer optics, u is 0.5 (characteristic X-ray diffraction), ca. 0.1 (synchrotron X-ray
diffraction; ask an instrument scientist for its exact value), and 0 (neutron diffraction).

3.9 Symmetric Profile Functions

3.9.1 Representative symmetric profile functions

Typical symmetric profile functions that have been used to approximate the profile shape of
reflections observed in angle-dispersive powder diffraction are given below:

Gp∆2θiKq “
2

πHK

«

1 ` 4

ˆ

∆2θiK
HK

˙2
ff´1

, (3.58)

Gp∆2θiKq “
2

?
ln 2

?
πHK

exp

«

´4 ln 2

ˆ

∆2θiK
HK

˙2
ff

, (3.59)

Gp∆2θiKq “
4

a

21{2 ´ 1

πHK

«

1 ` 4
´?

2 ´ 1
¯

ˆ

∆2θiK
HK

˙2
ff´2

, (3.60)

Gp∆2θiKq “

a

22{3 ´ 1

HK

«

1 ` 4
´

22{3 ´ 1
¯

ˆ

∆2θiK
HK

˙2
ff´ 3

2

, (3.61)

Gp∆2θiKq “ η
2

πHK

«

1 ` 4

ˆ

∆2θiK
HK

˙2
ff´1

` p1 ´ ηq
2
?
ln 2

?
πHK

exp

«

´4 ln 2

ˆ

∆2θiK
HK

˙2
ff

, (3.62)

Gp∆2θiKq “
2
a

21{m ´ 1Γ pmq
?

πΓ pm´ 0.5qHK

«

1 ` 4
´

21{m ´ 1
¯

ˆ

∆2θiK
HK

˙2
ff´m

, (3.63)
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Gp∆2θiKq “
1

βG
Re

«

ω

ˆ?
π∆2θiK
βG

` i
βL

?
πβG

˙

ff

, (3.64)

where HK is the full-widths at the half-maximum intensity (FWHM), η is the Lorentzian fraction,
m is the decay parameter, Γ is the Γ function, βG and βL are respectively the integral-breadths
of Gaussian and Lorentzian components, Re is the real part of the function, and ω is the complex
error function. All the functions are normalized in such a way that integrals from ´8 to 8 are
equal to unity.

Simple Lorentz (3.58) or Gauss (3.59) functions do not satisfactorily fit to profile shapes,
even though the profiles are symmetric except at low scattering angles. In general, poor fitting
of profiles strongly affects occupancies and atomic displacement parameters whereas fractional
coordinates are not significantly influenced by the choice of profile functions [92].

The profile function implemented in all the modern Rietveld-refinement programs for angle-
dispersive X-ray and neutron diffraction as well as energy-dispersive X-ray diffraction is the
pseudo-Voigt function (3.62), which is a linear combination of the Lorentz and Gauss functions
in a η : 1 ´ η ratio. The Pearson VII function (3.63) [93] is sometimes adopted as an optional
profile function. The Gauss function (η “ 0 or m “ 8) and the Lorentz function (η “ 1 or
m “ 1) are the two extremes of these two profile-shape functions as regards the degree of decay
from peak tops to tails. In X-ray powder diffraction, the Gauss function is usually too broad
near the peak and too narrow at the tails, whereas the Lorentz function is unsatisfactory in the
opposite way. Both the pseudo-Voigt and Pearson VII functions can be varied from Gaussian to
Lorentzian by changing the mixing parameter, η (Fig. 3.7), and the exponent m. Diffraction
profiles in angle-dispersive neutron diffraction can be approximated fairly satisfactorily by the
Gauss function.

Both of the pseudo-Voigt and Pearson VII functions fit powder-diffraction data equally well.
Nevertheless, the pseudo-Voigt function is generally preferred to the Pearson VII function for
Rietveld analysis because it can offer physical insight into the origin of the profile shape, e.g.,
profile broadening due to crystallite-size and microstrain effects (see Chap. 13).

The Voigt function (3.64), which is the convolution of the Gauss and Lorentz functions, is
also built into some Rietveld analysis programs [89,94]. It is, however, not very popular owing to
the inclusion of the complex error function whose calculation is very time-consuming. Because
the Voigt function (3.64) can be approximated by the pseudo-Voigt function (3.62) within a
maximum error of ˘1% of the peak height, the pseudo-Voigt function is widely used in place of
the Voigt function.

3.9.2 Primary and secondary profile parameters

To build in the profile functions, Eqs. (3.62) and (3.63), the dependence of η and HK (pseudo-
Voigt) and that ofm andHK on the Bragg angle, θK , must be investigated in detail experimentally
and theoretically. Hereafter, such parameters will be referred to as primary profile parameters
(PPP). For example, HK is often approximated by the equation of Caglioti et al. [95]:

HK “
`

U tan2 θK ` V tan θK `W
˘

1
2 . (3.65)
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Figure 3.7: Pseudo-Voigt function with an equal
integrated intensity and an equal FWHM; (a)
η “ 0 (Gauss), (b) η “ 0.5, and (c) η “ 1
(Lorentz)

Parameters such as U , V , and W , in the right-hand side of an equation representing the
dependence of a PPP on θK are called secondary profile parameters (SPP), which are common
to the whole 2θ (d) range. It is not local PPPs but global SPPs that are refined in Rietveld
analysis. Our original technique called partial profile relaxation where PPPs are refined in part
of reflections is described in detail in 4.4.

3.9.3 Pseudo-Voigt function of Thompson, Cox, and Hastings

Thompson, Cox, and Hastings [96] derived a series expansion relating the Lorentzian fraction in
the pseudo-Voigt function to HK and the FWHM’s of the Lorentzian component, HKL, for the
Voigt function as:

η “ 1.36603

ˆ

HKL

HK

˙

´ 0.47719

ˆ

HKL

HK

˙2

` 0.11116

ˆ

HKL

HK

˙3

. (3.66)

They also used a set of numerically convoluted profiles to obtain the series approximation for the
FWHM of the pseudo-Voigt profile:

HK “
`

H5
KG ` 2.69269H4

KGHKL ` 2.42843H3
KGH

2
KL ` 4.47163H2

KGH
3
KL

` 0.07842HKGH
4
KL `H5

KL

˘
1
5 ,

(3.67)

where the Gaussian FWHM, HKG, for the Voigt function is related to the variance of the
Gaussian component σ by the relation

HKG “
?
8σ2 ln 2. (3.68)
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Separate refinement of HKG and HKL is preferred when they are used to account for the
crystallite-size and microstrain effects, respectively, on profile broadening. In general, size
broadening is Lorentzian in shape whereas microstrain broadening is Gaussian. Convolution of
these two with the profile-shape functions of well-crystallized samples of adequate crystallite sizes
affords profiles for actual samples displaying microstrain and size broadening. Atomic displacement
parameters and occupancies are strongly influenced by crystallite size and microstrain, which
must therefore be included in the profile-shape function.

Here, expressions adopted by Larson and Von Dreele in their GSAS program [87] will be
introduced instead of simpler ones given by Thompson and coworkers [96] because they enable
one to model anisotropic profile broadening. The variance of the Gaussian component, σ2, varies
with θK as

σ2 “
`

U ` σ2ad
4
K

˘

tan2 θK ` V tan θK `W ` P sec2 θK , (3.69)

where σa is the anisotropic Gaussian broadening caused by microstrain [87,97], and dK is the
lattice-plane spacing. The angular dependence of σ is thus a function of the three parameters U ,
V , and W , the Scherrer coefficient, P , for Gaussian broadening, and σa. From Eqs. (3.68) and
(3.69), we obtain

HKG “

!

8 ln 2
“`

U ` σ2ad
4
K

˘

tan2 θK ` V tan θK `W ` P sec2 θK
‰

)
1
2
. (3.70)

Next, let ψK be the direction cosine between the reciprocal lattice vectors of reflection K and
reflection hakala where anisotropic profile broadening is the most marked. Then, HKL varies
with θK as

HKL “ pX `Xe cosψKq sec θK `
`

Y ` Ye cosψK ` γad
2
K

˘

tan θK , (3.71)

where Xe and Ye are anisotropy coefficients, and γa is the anisotropic Lorentzian broadening
arising from microstrain [87,97]. Chapter 13 will describe the determination of crystallite sizes
and microstrains from the profile parameters, U , X, and Y .

The two contributions to the Gaussian and Lorentian broadening, σ2a and γa, are obtainable
from the action of the mixing coefficient, ζ, for mixing a Lorentzian contribution to the anisotropic
microstain broadening, Γa, by

σa “ p1 ´ ζqΓa (3.72)

and
γa “ ζΓa. (3.73)

Stephens [97] expressed Γa in a semi-empirical form:

Γa “

˜

ÿ

HKL

SHKLh
HkK lL

¸
1
2

, (3.74)

where SHKL are refinable coefficients, and H, K, and L represent permutations of nonnegative
integers restricted to H `K ` L “ 4 (see Appendix C); beware that H, K, and L differ from
diffraction indices hkl. Thus, ζ and SHKL coefficients are refined in Rietveld analysis. Appendix
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C gives equations to represent Γ 2
a as functions of SHKL for all the standard Laue classes while

Table S-6 lists SHKL terms to be refined (vacant) or fixed (zero) in whole-pattern fitting such as
Rietveld and Le Bail analyses.

The pseudo-Voigt function of Thompson et al. contains the following refinable parameters
(SPPs): U , V , W , P , X, Xe, Y , Xe, ζ, and SHKL’s. The number of SHKL coefficients depends
on Laue symmetry, ranging from 2 (cubic) to 15 (triclinic). Interpretations of these coefficients
are described in the manual of GSAS.

U , V , and W tend to be highly correlated, with a result that various combinations of quite
different values can lead to essentially the same variance, σ2. These three parameters, therefore,
do not converge in a stable manner when refined simultaneously. In particular, refining P in
addition to U , V , and W almost certainly affords a singular (non-positive definite) coefficient
matrix. Of the four profile parameters in Eq. (3.68), V and W depend not on specimens but only
on instruments. Then, these two instrumental parameters may well be fixed at values obtained
by the Rietveld refinement of a well-crystallized sample where profile broadening is negligible,
i.e., P “ 0.

3.10 How to Introduce Asymmetry into Profile Functions

A variety of instrumental and sample effects, such as axial divergence of the X-ray beam and
sample transparency, cause marked asymmetry in the observed profile shape, especially at
low diffraction angles. Four methods have been proposed to make symmetric profile functions
asymmetric.

3.10.1 Asymmetry function

In the first method, the symmetric profile-shape function Gp∆2θiKq is modified for profile
asymmetry by multiplying Gp∆2θiKq and an asymmetric function, ap∆2θiKq, together [10,98].
For example, Rietveld [10] proposed the following asymmetric function containing the asymmetry
parameter A:

ap∆2θiKq “ 1 ´A cot θK∆2θiK |∆2θiK |. (3.75)

3.10.2 Superposition method

The second method introduces profile asymmetry by overlapping some symmetric profile functions
with different peak positions and integrated intensities. Will et al. reported a profile function
where 2θK of the Lorentz function was shifted toward the low 2θ side to match the asymmetry of
the experimental profiles and added the Gauss function. Howard [99] employed the multi-term
Simpson’s rule integration, where n symmetric profile-shape functions with different Simpson’s
coefficients for weights, gj , and shifts, jj , are positioned asymmetrically and superimposed with
each other:

G1p∆2θiKq “
1

3pn˘ 1q

n
ÿ

j“1

gjGp∆2θ1
iKq (3.76)
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with
∆2θ1

iK “ ∆2θiK ` fjAs cot 2θK . (3.77)

Here, G1p∆2θiKq is the asymmetric pseudo-Voigt function, and∆2θ1
iK is the 2θ difference modified

for profile asymmetry with the refinable asymmetry parameter, As. The corresponding Simpson’s
coefficients are:

n “ 3 : g1 “ g3 “ 1; g2 “ 4

n “ 5 : g1 “ g5 “ 1; g2 “ g4 “ 4; g3 “ 2

n “ 7 : g1 “ g7 “ 1; g2 “ g4 “ g6 “ 4; g3 “ g5 “ 2

n “ 9 : g1 “ g9 “ 1; g2 “ g4 “ g6 “ g8 “ 4; g3 “ g5 “ g7 “ 2

fj “

ˆ

j ´ 1

n´ 1

˙2

.

The number of terms, n (= 3, 5, 7, or 9), in Eq. (3.76) is either automatically adjusted for each
reflection using its FWHM and As or fixed at 3 in X-ray powder diffraction using characteristic
X rays (NBEAM = 1). The value of As must be positive to give reasonable tendencies of profile
asymmetry.

This method of making the profile shape asymmetric gives better fits to asymmetric profiles
than the simple one using Eq. (3.75), showing less correlation with lattice parameters. It may,
however, fail to fit strongly asymmetric profiles at very low scattering angles. In fact, the
Simpson’s rule integration can break up into multiple reflections for very strong asymmetry. It is
not very suitable for analyzing high-resolution powder-diffraction data.

3.10.3 Modeling of axial divergence with geometrical parameters

Finger, Cox, and Jephcoat [100] proposed a method to represent profile asymmetry as a function
of the sample height, hs, the detector height, hd, and the distance, lsd, between the sample and
detector (goniometer radius). Their approach, which is an implementation of the asymmetric
profile function described by van Laar and Yelon [101], offers physical insight into the origin of
the asymmetry because it is based explicitly upon axial divergence.

In RIETAN-FP, a profile function adopting the procedure of Finger et al. is formed by
a convolution of the pseudo-Voigt function of Thompson, Cox, and Hastings [96] with the
intersection of the diffraction cone at 2θK and a finite-height slit positioned below 2θK by τ .
The slit intercept function is

Dpτq “
l2sd sin 2θK

4hshdhpτq cosp2θK ´ τq
¨W pτq (3.78)

with

hpτq “ lsd

„

cos2p2θK ´ τq

cos2 2θK
´ 1


1
2

(3.79)

and

W pτq “

$

’

’

&

’

’

%

hs ` hd ´ hpτq for τinfl ď τ ď τmin

2min phs, hdq for 0 ď τ ď τinfl

0 elsewhere

.
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The inflection point at which the entire slit sees the sample is found by

τinfl “ 2θK ´ cos´1

»

–cos 2θK

d

ˆ

hs ´ hd
lsd

˙2

` 1

fi

fl (3.80)

while the point of the first contact between the slit and Debye–Scherrer cone is given by

τmin “ 2θK ´ cos´1

»

–cos 2θK

d

ˆ

hs ` hd
lsd

˙2

` 1

fi

fl . (3.81)

The convolution of Dpτq and the pseudo-Voigt function, Gp∆2θq, is

Hp∆2θq “

ż

Gp∆2θ ´ τqDpτqdτ

“
l2sd sin 2θK
4hshd

ż τmin

0

W pτqGp∆2θ ´ τq

hpτq cosp2θK ´ τq
dτ.

(3.82)

Because Hp∆2θq cannot be integrated analytically, a Gauss-Legendre quadrature is calculated
instead:

Hp∆2θq “
l2sd sin 2θK
4hshd

¨

N
ÿ

i“M

wi

„

W pδiqGp∆2θ ´ δiq

hpδiq cos δi



N
ÿ

i“M

wi

„

W pδiq

hpδiq cos δi



“
sin 2θK
4rsrd

¨

N
ÿ

i“M

wi

„

W pδiqGp∆2θ ´ δiq

hpδiq cos δi



N
ÿ

i“M

wi

„

W pδiq

hpδiq cos δi



.

(3.83)

In Eq. (3.83), δi and wi are the displacements and weights for the points included in the
summations; rs “ hs{lsd; rd “ hd{lsd; i ranges from M “ N{2 ` 1 to N where N is chosen to
give the number of intervals needed to obtain a sufficiently accurate integration. The range of N
lies between 10 and 100, depending on τmin.

Equation (3.83) is described only by two parameters, rs and rd, which can be specified exactly
from the diffractometer geometry. These two parameters can be measured experimentally or
refined when Bragg reflections in a very low-2θ region are included in powder-diffraction data.
Because refinement of rs and rd requires some skill, Papoular [102] proposed a procedure for
their automatic estimation.

This approach takes only axial divergence into account while neglecting several other effects
responsible for profile asymmetry. Because this method is not optimized for all the optics, fits
between observed and calculated patterns may sometimes be inadequate with it, particularly, in
a very low 2θ region.

3.10.4 Split profile functions

Asymmetric profiles can also be approximated by a split profile-shape function where two
independent sets of profile-shape parameters are assigned to the low- and high-angle sides of
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each Bragg reflection. Toraya [103] proposed two split profile functions, i.e., a split pseudo-Voigt
function

Gp∆2θiKq “

p1 `Aq

”

ηH `
?

π ln 2 p1 ´ ηHq

ı

ηL `
?

π ln 2 p1 ´ ηLq `A
”

ηH `
?

π ln 2 p1 ´ ηHq

ıˆ

$

&

%

ηL
2

πHK

«

1 ` F pAq

ˆ

∆2θiK
HK

˙2
ff´1

` p1 ´ ηLq

ˆ

ln 2

π

˙
1
2 2

HK
exp

«

´ ln 2 ¨ F pAq

ˆ

∆2θiK
HK

˙2
ff

,

.

-

(3.84)

and a split Pearson VII function

Gp∆2θiKq “
2 p1 `Aq

?
πHK

«

AΓ pmL ´ 1{2q
a

21{mL ´ 1Γ pmLq
`

Γ pmH ´ 1{2q
a

21{mH ´ 1Γ pmHq

ff´1

ˆ

«

1 ` p21{mL ´ 1qF pAq

ˆ

∆2θiK
HK

˙2
ff´mL

(3.85)

with

F pAq “

ˆ

1 `A

A

˙2

. (3.86)

In Eqs. (3.84) and (3.85), A is the asymmetry parameter, and subscripts L and H are the regions
of 2θ lower and higher than the peak position, respectively. Both equations are effective in a
region ∆2θiK ă 0. For ∆2θiK ą 0, subscripts L and H should be replaced with each other,
and A with 1{A. The dependence of PPPs other than HK in Eqs. (3.84) and (3.85) on θK is
represented in the forms

A “ a0 ` a1

ˆ

?
2 ´

1

sin θK

˙

` a2

ˆ

2 ´
1

sin2 θK

˙

, (3.87)

η “ η0 ` η1p2θKq, (3.88)

m “ ´1.517 ` 0.980
“

m0 `m1p2θKq
‰

`
1.578

m0 `m1p2θKq
, (3.89)

where a0, a1, a2, η0, η1, m0, and m1 are SPPs refined by a least-squares method. Two sets of
PPPs are assigned to the low- and high-angle sides of the diffraction profile. Toraya used Eq.
(3.65) to represent the dependence of HK on θK . On the other hand, we adopted a more complex
equation

HK “

”

`

U ` Ue cos
2 ψK

˘

tan2 θK ` V tan θK `W ` Pe pcosψK sec θKq
2

ı
1
2 (3.90)

containing Ue and Pe to represent anisotropic broadening arising from effects of microstrain and
crystallite sizes, respectively; ψK is just the same as in Eq. (3.71). Although the main problem
with the split profile function is the difficulty in assigning a physical meaning to the functional
form, both Eqs. (3.84) and (3.85) are flexible enough to fit observed diffraction profiles fairly
well.
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3.11 Shifts in Peak Positions

3.11.1 Pseudo-Voigt function of Thompson, Cox, and Hastings

In the Bragg–Brentano geometry, the specimen-displacement and specimen-transparency effects
shift peak positions of Bragg reflections [52].

Let ds be the displacement of the specimen surface from the goniometer axis, Rg the radius
of the goniometer, and Ds the specimen displacement parameter, then 2θK is shifted from the
ideal position by

∆2θK “ ´
2ds
Rg

cos θK

“ Ds cos θK .

(3.91)

On the other hand, the peak shift due to penetration of X rays into the sample is represented
as

∆2θK “ ´
1

2µRg
sin 2θK

“ Ts sin 2θK ,

(3.92)

where Ts is the specimen-transparency parameter. The introduction of Ts is indispensable when
dealing with X-ray data of compounds with small linear attenuation coefficients, µ, which is the
case in various organic compounds. In general, specimens containing only light elements with
small mass attenuation coefficients,

µm “ µ{ρ, (3.93)

have large values of Ts and, in turn, ∆2θK .
In the Debye–Scherrer geometry, the specimen displacement from the central position and

decentering along the incident beams give ∆2θK proportional to cos θK and sin 2θK , respectively.
∆2θK arising from absorption of X rays by the sample is also proportional to cos θK . ∆2θK

is, therefore, represented as the sum of terms proportional to cos θK and sin 2θK in both the
Bragg–Brentano and Debye–Scherrer optics. Then, ∆2θK equals the sum of the zero-point shift,
Z, Eq. (3.91), and Eq. (3.92):

∆2θK “ Z `Ds cos θK ` Ts sin 2θK . (3.94)

This equation and the pseudo-Voigt function of Thompson, Cox, and Hastings [96] (see 3.9.3)
are combined in RIETAN-FP.

3.11.2 Split profile functions

Toraya [103] represented the dependence of ∆2θK on θK in the split profile functions (3.84) and
(3.85) by three linear equations containing four peak-shift parameters, t0, t1, t2, and t3:

∆2θK “ t0 ` t1 cos 2θK ` t2 sin 2θK ` t3 tan θK , (3.95)

∆2θK “ t0 ` t1p2θKq ` t2p2θKq2 ` t3p2θKq3, (3.96)
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∆2θK “ t0 ` t1 tan θK ` t2 tan
2 θK ` t3 tan

3 θK . (3.97)

To minimize correlations among the peak-shift parameters in Eq. (3.96), we approximated
∆2θK by a finite sum of Legendre polynomials, FjpqKq, orthogonal relative to integration over
the interval r´1, 1s:

∆2θK “

3
ÿ

j“0

tjFjpqKq (3.98)

with qK being the diffraction angle, 2θK , normalized between ´1 and 1

qK “
2θK ´ θmax ´ θmin

θmax ´ θmin
, (3.99)

and
FjpqKq “

ˆ

2j ´ 1

j

˙

qKFj´1 pqKq ´

ˆ

j ´ 1

j

˙

Fj´2 pqKq , (3.100)

where θmax and θmin are, respectively, the maximum and minimum diffraction angles (θ), F0pqKq “

1, and F1pqKq “ qK . Equation (3.97) is likewise modified as

∆2θK “

3
ÿ

j“0

tjFjptKq (3.101)

with
tK “

2 tan θK ´ tan θmax ´ tan θmin

tan θmax ´ tan θmin
(3.102)

and
FjptKq “

ˆ

2j ´ 1

j

˙

tKFj´1 ptKq ´

ˆ

j ´ 1

j

˙

Fj´2 ptKq . (3.103)

3.11.3 Correction for peak positions with an internal standard material

Equations (3.95)–(3.97) and parameters t0´t3 to represent the angular dependence of shifts
in peak positions have no physical meanings. Because t0´t3 and lattice parameters are highly
correlated with each other, refinement of them in addition to lattice parameters should be carried
out very carefully, e.g., by mixing standard reference materials such as Si (SRM 640d) in samples.
Part of peak-shift parameters sometimes need to be fixed at values refined from intensity data of
a standard reference material by fixing its lattice parameters at a certificated value.

For example, on the use of the split profile functions, the lattice parameters of a standard
sample (mixed as an internal standard or only itself) are fixed, and t0 ´ t3 (or part of them) are
refined in Rietveld analysis. The four peak-shift parameters, t0 ´ t3, should be determined with
a standard sample having a similar absorption coefficient, and only the zero-point shift, t0, is
refined in actual structure refinement. Ideally, two separate measurements with and without an
internal standard are preferable, which is, however, impossible in many cases because of high
prices of standard samples and/or demands to keep samples pure.

3.12 Background Functions

RIETAN-FP supports four types of background functions: NRANGE = 0´3. When NRANGE ą 0,
2θ and background pairs are read in from file hoge.bkg (see 17.5).
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3.12.1 NRANGE = 0

Background parameters (bj ; j = 0´11) are refined by a method of least squares. Let qi be
the diffraction angle, 2θi, normalized between ´1 and 1, θmax the maximum 2θ, and θmin the
minimum 2θ, then qi is obtained by

qi “
2θi ´ θmax ´ θmin

θmax ´ θmin
. (3.104)

The background, ybp2θiq, at step i is approximated by a finite sum of Legendre polynomials,
FjpqKq, orthogonal relative to integration over the interval r´1, 1s:

ybp2θiq “

11
ÿ

j“0

bjFjpqiq (3.105)

with
Fjpqiq “

ˆ

2j ´ 1

j

˙

qiFj´1 pqiq ´

ˆ

j ´ 1

j

˙

Fj´2 pqiq . (3.106)

Correlation coefficients between background parameters can be somewhat reduced with this
background function. Even “humps” due to amorphous or poorly crystallized compounds may
be fit well by increasing the number of refinable background parameters. However, be careful
not to vary too many background parameters when dealing with a diffraction pattern whose
background has simple dependence on 2θ; refining six background parameters would be adequate
in such a case.

3.12.2 NRANGE = 1

Background intensities at (interpolated) values at specified 2θ’s are fixed in this mode. If a
background is zero, it is set at a smoothed value at that data point. Backgrounds at other data
points are fixed at interpolated values. Such a manner is useful for the analysis of diffraction
patterns where the number of reflections are relatively small and the background curve is complex,
for example, having “humps.” For the format of a file, hoge.bkg, storing background intensities,
see 17.5.2.

Note that all data points farther than the profile cutoffs of the nearest Bragg reflection are
excluded in least-squares fitting.

3.12.3 NRANGE = 2

Backgrounds of all the points are fixed at values recorded in hoge.bkg, from which 2θ and
background pairs are input. Their total number should be equal to that of observed diffraction
intensities in file hoge.int.

All data points farther than the profile cutoffs of the nearest Bragg reflection are excluded in
least-squares fitting as with NRANGE = 1.

Measuring diffraction data of capillary tubes

We sometimes measure X-ray diffraction data of empty capillary tubes under experimental
conditions (e.g., temperature and wavelength) similar to those of measuring diffraction intensities
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of samples, smooth them, and record the resulting data in hoge.bkg. Program PowderX [104]
is very convenient to smooth these data [105]. This method is ineffective when the shape of
background intensities in a sample differs considerably from that of diffraction intensities in the
capillary tube.

Sonneveld–Visser method

An alternative to the above method in samples showing relatively simple patterns is to determine
background intensities in diffraction data of samples with a simple procedure of Sonneveld and
Visser [106] using PowderX or RIETAN-FP (see 11.2). The use of RIETAN-FP is recommended
because somewhat troublesome procedures are required in PowderX. For two different formats
of hoge.bkg, see 17.5.2.

Conversion of hoge.bgr into hoge.bkg

The third method of creating hoge.bkg utilizes a graphic tool for powder diffraction, WinPLOTR2

[107], or FOX3 for ab initio crystal-structure solution [108]. With these two applications, hoge.bgr,
where discrete background intensities are recorded, are produced directly or indirectly. If the
following three conditions,

1. NRANGE is set at 2 or 3 in hoge.ins.

2. A file, hoge.bkg, storing backgrounds of all the data points does not exist in the current
folder.

3. The current folder contains hoge.bgr.

are all satisfied, RIETAN-FP automatically converts hoge.bgr into hoge.bkg by interpolating the
discrete backgrounds,

WinPLOTR makes it possible to determine discrete background intensities, delete parts of
them, add more appropriate backgrounds, and output the resultant full points of backgrounds
to a file, hoge.bgr, which is also the case with NRANGE = 3 (see 3.12.4). Note that hoge.bgr
may consist of two or more blocks, i.e., lines from ‘! Data file :’ to the last pair of 2θi and
ybp2θiq and that RIETAN-FP inputs only the last block when dealing with multi-block hoge.bgr.
For details in cooperation between RIETAN-FP and WinPLOTR, refer to an opened note (in
Japanese) of Evernote.4

On the other hand, FOX has an advanced feature of estimating the background in a powder
diffraction pattern by a robust Bayesian analysis proposed by David and Sivia [109]. A text file,
hoge.pcr, exported by FOX for FullProf [110] contains lines of 2θi, ybp2θiq, and 0.0 sandwiched
between two comment lines: ‘!2Theta Background for .....’ and ‘!’. The part of background
intensities in hoge.pcr can be directly input by RIETAN-FP in the same way as hoge.bgr exported
by WinPLOTR.

2http://www.cdifx.univ-rennes1.fr/winplotr/winplotr.htm
3https://github.com/vincefn/objcryst/releases
4http://urx.mobi/BqUY
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Alternatively, a macro called pcr2bgr of the integrated assistance environment for RIETAN-
FP–VENUS (see Chap. 16) enables us to convert hoge.pcr into hoge.bgr consisting of 2θi and
ybp2θiq values without any comment lines. The resulting file, hoge.bgr, can be edited with an
editor and then imported by by pressing the Object button and selecting “Import” in FOX. As
described above, hoge.bgr can be converted into hoge.bkg by RIETAN-FP if the three conditions
are satisfied. An advantage of FOX over WinPLOTR is that both Windows and macOS versions
of FOX are available.

3.12.4 NRANGE = 3

The background is represented by

ybp2θiq “ y1
bp2θiq

11
ÿ

j“0

bjFjpqiq

“ y1
bp2θiq

11
ÿ

j“0

bj

«

ˆ

2j ´ 1

j

˙

qiFj´1 pqiq ´

ˆ

j ´ 1

j

˙

Fj´2 pqiq

ff

,

(3.107)

where y1
bp2θiq is the approximate background input from hoge.bkg [105], which is just the same

as with NRANGE = 2.
This composite background function is particularly useful for the Debye–Scherrer geometry

where samples are charged in capillary tubes, which makes the background rather complex and
high because of short-range order in glass.

3.13 Classification of Refinable Parameters

In summary, the calculated intensity, fipxq, contains the following five kinds of parameters, x
(functions in brackets are those containing each parameter).

1. Parameters to adjust integrated intensities
Scale factor, s
Preferred-orientation parameters rPKs

2. Parameters related to peak positions of Bragg reflections
Lattice parameters rθKs

Parameters related to shifts in peak positions rθKs

3. Profile parameters
Parameters to express the dependence of FWHM on θK rGp∆2θiKqs

Parameters to approximate the dependence of the rate of decay on θK rGp∆2θiKqs

Parameters to represent profile asymmetry due to axial divergence, sample transparency,
etc. rGp∆2θiKqs

4. Crystal-structure parameters
Parameters, xj , yj , zj , gj , Bj , β11j , β22j , β33j , β12j , β13j , and β23j , by which crystal
structures are represented rF phK , cryst.qs
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5. Magnetic-structure parameters
Parameters to describe the magnetic moments (directions and magnitudes of spins) of
magnetic atoms rF phK ,magn.qs

6. Background parameters
Parameters to describe the background rybp2θiqs

The most important purpose of Rietveld analysis is to refine crystal-structure parameters as
well as lattice parameters. In addition, the qualitative analysis of mixtures from scale factors of
phases contained in them are now widely used to identify industrial products (Chap. 7). Recent
progress in highly-sensitive detectors for laboratory X-ray powder diffraction has made this
technique more and more practical.

The zero-point shift and background parameters are global parameters independent of phases
contained in a sample whereas all the other parameters are phase-dependent. Nevertheless,
profile parameters are sometimes made common to all the phases with linear equality constraints
(see 17.3.16) to decrease the total number of profile parameters.

Only commensurate and collinear magnetic structure can be analyzed with RIETAN-FP
(see 3.6 and Chap. 8) in view of the fact that most magnetic materials investigated by neutron
powder diffraction have such simple magnetic structures.
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OTHER DETAILS RELATED TO
RIETVELD ANALYSIS

4.1 Nonlinear Least-Squares Methods

Almost all computer programs for Rietveld refinement employ some form of the Gauss-Newton
algorithm to find parameters which minimize Spxq apart from XRS-84 and MINREF adopting a
variable metric method. However, when applied to Rietveld analysis, the Gauss-Newton method
suffers a disadvantage that the range of convergence is rather narrow, and the refinements often
converge to local minima rather than the global minimum. Since none of algorithms has proved
to be so superior that it can be classified as a panacea for nonlinear least-squares solutions, it is
advantageous to have more than one method available on call.

In RIETAN-FP, three different techniques for nonlinear least-squares fitting are adopted:
the Gauss-Newton method, a modified Marquardt method, and the conjugate-direction method.
All of them are designed to give stable convergence. RIETAN-FP also has the very convenient
features of incremental and combined refinements. The algorithms implemented in RIETAN-FP
will be introduced shortly.

4.1.1 Gauss–Newton method

In this algorithm, changes in n variable parameters at each iterative step, ∆x, are calculated by
setting up a normal equation

M ¨ ∆x “ N , (4.1)

where M is the coefficient matrix with n rows and n columns, and both ∆x and N are nˆ 1

column matrices (n: number of refined parameters). On linear approximation of M to reduces
the time required to calculate M , each element in M is simply represented as

Mjk “
ÿ

i

wi
∂fipxq

∂xj
¨

∂fipxq

∂xk
, (4.2)

where the summation with respect to i is carried out over all the diffraction steps. The jth
element of N is obtained by

Nj “
ÿ

i

wi ryi ´ fipxqs
∂fipxq

∂xj
. (4.3)
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In RIETAN-FP, both M and N are declared as double precision to raise computation accuracy,
and only a lower triangle of the positive-definite symmetric matrix M is kept in a one-dimensional
array to save storage.

Although ∆x is evaluated from M´1 ¨ N in most structure-refinement programs, there is
little to recommend such an old-fashioned technique because of the long computation time and
low precision. Accordingly, Choleski decomposition of M and forward- and back-substitutions
for the solution of consistent sets of linear equations [111] are carried out in RIETAN-FP. A new
set of x and x1 is readily calculated by

x1 “ x ` α∆x (4.4)

with

α “ 2´m pm “ 0 ´ 4q.

The value of α is appropriately adjusted, according to the rule adopted in SALS [112]. The
variable damping factor, α, is initially set at 1 (m “ 0). If the current set of x1 gives physically
or mathematically meaningless variables (e.g., divergence of SPPs and sK) or Spx1q ą Spxq, α is
halved, and x1 is calculated again with Eq. (4.4). In the next step of iterations, α is doubled if
α ď 1{2. Such a procedure decreases α in the case of high non-linearity and increases α with
increasing linearity near the solution.

4.1.2 Modified Marquardt method

The Marquardt method [113] also calculates M and N but adds λ ¨ diagpMq (λ: Marquardt
parameter; diag: diagonal matrix) to M to stabilize the convergence to the minimum:

rM ` λ ¨ diagpMqs ¨ ∆x “ N . (4.5)

Then, ∆x tends towards the steepest descent direction as λ increases, while the Gauss-Newton
solution is obtained when λ becomes negligible. In other words, λ is increased in a high non-
linearity region far from the solution but decreased in a high linearity region near the solution.
Even if M is not positive definite, it can be made computationally positive definite by choosing
λ to be large enough.

The value of λ is automatically adjusted during a series of iterations using a most efficient
method developed by Fletcher [112,114]. The motivation for his strategy is that if the ratio of
(actual reduction in Spxq/(predicted reduction in Spxq) is near 1, then λ ought to be reduced,
and if the ratio is near to or less than 0, then λ ought to be increased.

Let ∆S be the change in the sum of weighted squares of residuals,

∆S “ Spx ` ∆xq ´ Spxq, (4.6)

and ∆S̄ be the corresponding change in a linearized model. In Fletcher’s algorithm, the ratio of
∆S to ∆S̄,

r “
∆S

∆S̄
, (4.7)

which is regarded as a measure of non-linearity, is used to adjust λ according to the following
scheme:
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1. r ě 0.75 Nearly as expected; λ is halved.

2. 0.75 ą r ą 0.25 A little disappointing; λ remains unchanged.

3. 0.25 ě r ě 0 Because of high non-linearity, λ is increased.

4. r ă 0 ∆S ą 0; λ is increased to recalculate ∆x.

In cases 1–3, x is replaced with x ` ∆x, and M ` λ ¨ diagpMq is calculated to proceed to the
next step. A factor, u, to be multiplied by r in cases 3 and 4 ranges from 2 to 10:

u “ max p2,minp2 ´ r, 10qq . (4.8)

The critical value of λ, λc, is determined from

λc “
1

trace
`

M´1
˘ (4.9)

as a λ value that halves the norm of ∆x.
Fletcher’s elaborate algorithm improves the performance of the Marquardt method in certain

circumstances, yet requires negligible extra computer time and storage. The modified Marquardt
method is very effective for dealing with highly nonlinear model functions, fpxq, or problems in
which starting values for refinable parameters differ markedly from the true ones. In the same
way as with Gauss–Newton method, λ is increased if the current set of x1 give physically or
mathematically meaningless variables.

4.1.3 Conjugate-direction method

Powell’s conjugate-direction method [115–118] is one of the most efficient algorithms for mini-
mizing objective functions without calculating partial derivatives. Powell’s method is essentially
based on the idea that if the following two conditions,

1. The minimum of the quadratic function is found along each of p conjugate directions (p ă n;
n: number of refined parameters) in one stage of the search.

2. A step is accordingly made in each direction.

are satisfied, the overall step from the start to the pth step is conjugate to all the p subdirections
of search [117].

In the case of Rietveld analysis, the sum of weighted squares of residuals, i.e., Spxq in Eq.
(2.1), corresponds to the objective function. The hessian matrix, Hpxq, of Spxq to be minimized
by the conjugate-direction method is defined as the square matrix of the second partial derivatives
of Spxq:

Hpxq “ ∇2Spxq

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

∂
2Spxq

∂x21

∂
2Spxq

∂x1∂x2
. . .

∂
2Spxq

∂x1 ∂xn
∂
2Spxq

∂x2∂x1

∂
2Spxq

∂x22
. . .

∂
2Spxq

∂x2 ∂xn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂
2Spxq

∂xn ∂x1

∂
2Spxq

∂xn ∂x2
. . .

∂
2Spxq

∂x2n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
(4.10)
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Hpxq is a positive-definite square matrix. Two directions of search, sj and si, which are column
vectors indicating the direction of search, are said to be conjutate if

psjq
T∇2Spxpkqqsi “ 0, i ‰ j

psjq
T∇2Spxpkqqsi ě 0, i “ j

(4.11)

where superscript T denotes the transpose of a vector, superscripts, k “ 0, 1, . . ., in parentheses
are the stages of the search, and subscripts are used to distinguish among the vectors on one
stage.

The transition from a starting point xpkq

0 to a point xpkq
m is formulated as

xpkq
m “ x

pkq

0 `

m´1
ÿ

i“0

λ
pkq

i s
pkq

i , (4.12)

where λpkq is the step length to minimize Spxq in the direction of search. The essence of the
procedure is as follows [117]. At a vector x

p0q

0 in the n-dimensional euclidean space, En, the
initial sp0q

1 , . . . , s
p0q
n are taken to be parallel to the coordinate axis of En. A first step is taken in

the s
p0q
n direction; that is, Spx

p0q

0 ` λs
p0q
n q is minimized by a unidimensional search with respect

to λ to evaluate λp0q

0 , with a result that xp0q

1 “ x
p0q

0 ` λ
p0q

0 s
p0q
n . Next, for each of the n directions

s
p0q

i , i “ 1, . . . , n, in turn Spx
p0q

i ` λs
p0q

i q is minimized to find λp0q

i , and Eq. (4.12) is applied to
calculate new values of xp0q

i successively.
The following theorem for quadratic objective funcitions [117] serves to understand how

conjugate diretions are involved in Powell’s algorithm:

Theorem
if, starting at xp0q, the point xpaq is located in the direction s at the minimum of
Spxq, and if, starting from the point xp1q ‰ xp0q, the point xpbq is located in the
same direction s at the minimum of Spxq, then, if Spxpbqq ă Spxpaqq, the direction
pxpbq ´ xpaqq is conjugate to s.

For further details in Powell’s method, refer to Ref. [117].
In RIETAN-FP, a combination of Davies–Swann–Campey and Powell algorithms [117], which

is better than either of the individual algorithms, is adopted as a method of unidimensional
minimization. Spxq is set at an unusually large value if the current set of x1 give physically or
mathematically meaningless variables, which leads to stable convergence to the solution while
avoiding divergence. Standard uncertainties of refinable parameters are obtained by calculating
M and inverting it (see 4.2) after convergence to the solution.

Since the directions for minimization are determined solely from successive evaluations of
the objective function, Spxq, this procedure is much slower than the two least-squares methods
with derivatives: the Gauss–Newton and modified Marquardt methods. It is, however, capable
of solving ill-conditioned problems in which very high correlations exist between parameters.
Because the conjugate-direction method is very fast in any nearly quadratic region near a
minimum, it is mainly used in the late stages of refinement to test the prospect of a local
minimum being the global minimum or to escape from a local minimum by using sufficiently large
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step sizes in line searches. On the other hand, someone using the Gauss-Newton and Marquardt
algorithms can check the convergence to the global minimum simply by using different starting
vectors. In our experience, the conjugate-direction method has been most effective to get out of
local minima where the solution obtained by the Gauss–Newton or modified Marquardt method
was trapped on the analysis of compounds, e.g., organic compounds and zeolites, containing
many atoms in the asymmetric unit.

4.1.4 Auxiliary techniques for stable convergence

We usually proceed in steps in Rietveld analysis, first refining only one or two parameters
and then gradually letting more and more of the parameters be adjusted in the successive
least-squares refinement cycles. RIETAN-FP requires only a single input to refine parameters
incrementally; that is, variable parameters in each cycle can be pre-designated by the user or
selected appropriately by the program when using the Gauss-Newton and modified Marquardt
methods (incremental refinements). Repetition of batch jobs is, hence, unnecessary in most
Rietveld refinements. For example, linear parameters (background parameters and a scale factor)
are refined in the first cycle, lattice parameters in the second cycle, profile parameters in the
third cycle, and subsequently all the parameters simultaneously. Even if initial parameters are
far from the true solution, incremental refinements coupled with the appropriate adjustment of d
(Gauss-Newton method) or λ (modified Marquardt method), enable very stable convergence to
an optimum solution in most cases.

Combined refinements (NAUTO = 3) are also possible in which the parameters obtained by
the incremental refinements described above are further adjusted by the conjugate-direction
method to ensure that there are no lower minima in the vicinity of the one found by the initial
refinement.

In general, the most important notice in nonlinear least-squares fitting is to provide sufficiently
good initial estimates of refined parameters, which is certainly the case in Rietveld analysis. In
particular, starting values for the lattice parameters should be close enough to the true ones to
ensure that the calculated diffraction profiles adequately overlap with the corresponding observed
ones. If the lattice parameters are in error by say 1%, then the refinement will diverge almost
certainly.

4.2 Standard Uncertainties

Let M be the diagonal element of the inverse coefficient matrix in the normal equation, n the
number of refinable parameters, and C the number of constraints applied, then the standard
uncertainty, σj , for the jth parameter, xj , is usually evaluated as

σj “

«

M´1
jj Spxq

N ´ n` C

ff
1
2

. (4.13)

In recent years, much discussion has appeared in the literature about the reliability of σj in
Rietveld refinements [119]. The σj ’s calculated with Eq. (4.13) are correct, provided there are no
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unaccounted systematic errors. However, in most Rietveld refinements, systematic errors result
from the preferred orientation, inadequate profile shape and structure models, poor background
fit, inclusion of unknown impurities, etc., which causes serial correlation among neighboring
residuals. If there are systematic errors unaccounted for, the calculated σj is no longer a valid
measure of uncertainty. Under these conditions, σj ’s calculated by Rietveld refinement may be
significantly smaller than those obtained by the integrated-intensity refinement of the same data
set.

Scott [120] proposed a method of adjusting σj ’s in Rietveld analysis to provide comparability
with integrated-intensity refinement:

σj “

#

M´1
jj

„

1 `
Spxq ´N ´ np

NB ´ nc



+
1
2

, (4.14)

where np is the number of parameters describing the profile (all those parameters in the model
that do not directly affect the integrated intensities), NB is the number of Bragg reflections, and
nc is the number of structure parameters. Because this equation is based on the assumption that
only the integrated intensities are subject to model errors, it should be applied only to structure
parameters. The adjustments calculated above are only approximations because they assume
that Bragg reflections are completely resolved and that the model for the profile shape is good,
which are both seldom true. Nevertheless, this procedure imposes reasonable restraints on the
uncritical use of σj ’s generated by Rietveld refinements as measures of the accuracy of the refined
structure parameters.

4.3 Reliability Indices

Numerical criteria used to measure the agreement between observed and calculated intensities
and the progress of Rietveld refinement fall into three classes described in what follows. The
method to estimated observed integrated intensities will also be described in 4.3.3 in connection
with two reliability indices based on integrated intensities.

4.3.1 Reliability indices based on observed and calculated intensities

The most significant reliability index is Rwp (R-weighted pattern) because its numerator is the
quantity that is actually minimized in the least-squares refinement procedure:

Rwp “

$

’

’

’

’

&

’

’

’

’

%

N
ÿ

i“1

wi ryi ´ fipxqs
2

N
ÿ

i“1

wiy
2
i

,

/

/

/

/

.

/

/

/

/

-

1
2

. (4.15)

Rp (R-pattern) defined as

Rp “

N
ÿ

i“1

ˇ

ˇyi ´ fipxq
ˇ

ˇ

N
ÿ

i“1

yi

(4.16)
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is also reported frequently. A variation of Rp is RR (R-Rietveld) defined by Rietveld [10] as

RR “

N
ÿ

i“1

ˇ

ˇyi ´ fipxq
ˇ

ˇ

N
ÿ

i“1

|yi ´ ybp2θiq|

. (4.17)

Both Rwp and Rp are influenced mostly by the intensity of the diffraction line as well as the
background level because the sum of the observed intensities is used in the denominator of these
reliability indices. It is obvious that Rwp, for example, will be decreased as the background level
is increased (the S/N level decreased) because it is easier to get a good fit to a function that
varies slowly and near to monotonically with angle, as the background does, than to one that has
many sharp maxima along the way, as the pattern of the Bragg reflections does. Experienced
users, therefore, do not expect to judge the relative quality of Rietveld refinements carried out
with different data sets and even different materials by the relative Rwp or Rp values. Those
indices are, however, good indicators of the progress of a particular refinement.

To judge the quality of the fit, the final Rwp value should be compared to the expected
Rwp, Re (R-expected), which is derived from the statistical error associated with the measured
intensities:

Re “

«

pN ´ nq

M

N
ÿ

i“1

wiy
2
i

ff

1
2

. (4.18)

Thus, the goodness-of-fit indicator,

S “
Rwp

Re

“

#

N
ÿ

i“1

wi ryi ´ fipxqs
2

M

pN ´ nq

+

1
2

,

(4.19)

is often used as a measure of the fit between observed and calculated patterns [121]. An S value
of unity indicates that the refinement is complete; it can get no better statistically. An S value
of 1.3 or less is usually considered to be quite satisfactory. S includes the number of variables,
nP , undergoing refinement. It may, therefore, help in determining whether or not a change in n
significantly decreases the residual error.

The goodness-of-fit, GofF [122],

GofF “ S2

“

N
ÿ

i“1

wi ryi ´ fipxqs
2

M

pN ´ nq
(4.20)

is as important as Rwp because its numerator is the quantity to be minimized by a method of
least squares.

Integrating-type detectors such as imaging plates sometimes give too high intensities, e.g.,
more than 1 000 000, which may give unreasonably large S values. In such case, raw intensities
have to be adjusted by multiplying a factor to obtain acceptable S values.
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4.3.2 Reliability indices based on integrated intensities

RB (R-Bragg factor; also denoted byRI), RF (R-structure factor), andRF 2 , which are respectively
defined as

RB “

ÿ

K

ˇ

ˇIophKq ´ IphKq
ˇ

ˇ

ÿ

K

IophKq
, (4.21)

RF “

ÿ

K

ˇ

ˇ

ˇ
|FophKq| ´ |F phKq|

ˇ

ˇ

ˇ

ÿ

K

|FophKq|
, (4.22)

RF 2 “

ÿ

K

ˇ

ˇ

ˇ

“

FophKq
‰2

´
“

F phKq
‰2

ˇ

ˇ

ˇ

ÿ

K

“

FophKq
‰2 (4.23)

are exceptional in the point that they are not calculated from residuals yi ´ fipxq. IophKq

and IphKq in Eq. (4.21) are, respectively, the observed and calculated integrated intensities
for reflection K, and FophKq in Eq. (4.22) is the observed structure factor. RF is the closest
equivalent to the R factor quoted in single-crystal studies.

4.3.3 Estimation of observed integrated intensities

Neglecting SRpθiq, Apθiq, and Dpθiq in Eq. (2.5), we can represent IphKq as

IphKq “ smK |F phKq|2PKLpθKq. (4.24)

IophKq and, in turn, |FophKq| for an overlapped reflection are actually not observed but estimated
after Rietveld analysis from observed diffraction data and final refinable parameters with the
following approximation method proposed by Rietveld [10].

Let us suppose that some reflections overlap each other at step i. The observed intensity, yiB,
for overlapped Bragg reflections is equal to the difference between the observed intensity and the
background function:

yiB “ yi ´ ybp2θiq. (4.25)

IophKq is approximated by calculating the profile intensity, Yij , of each overlapped reflection
from final refinable parameters after Rietveld analysis and apportioning yiB in proportion to
Yij [10]:

IophKq “ ∆2θ
ÿ

i

yiB
YiK

ÿ

j

Yij
, (4.26)

where ∆2θ is the step width in radians, YiK is the calculated intensity of Bragg reflection K,
ř

i

is the summation over all the diffraction points contributing to IphKq, and
ř

j is the summation
over all the reflections contributing to yiB.

Figure 4.1 shows the observed intensity, yiB , for overlapped Bragg reflections, the calculated
intensity, Yi1, for the 2113 reflection (K “ 1), and the calculated intensity, Yi1, for the 2016
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Figure 4.1: Partition of observed Bragg intensities
into contributions of two overlapped reflections in
Tl2(Ba0.8Sr0.2)2Ca2Cu3O10´δ

(K “ 2) reflection in neutron powder diffraction data (λ = 1.5401Å) of a high-Tc superconductor
Tl2(Ba0.8Sr0.2)2Ca2Cu3O10´δ [123]. In this example of the two overlapped reflections, yiB “

Yi1 ` Yi2 at the ith step.
From Eq. (2.5), we can derive

YiK “ smK |F phKq|2PKLpθKqGp∆2θiKq. (4.27)

Replacing K with j in this equation affords Yij . |FophKq| in Eq. (4.22) is readily calculated from
IophKq

|FophKq| “

„

IophKq

smKPKLpθKq


1
2

. (4.28)

In the case of an isolated reflection (j “ K), YiK{
ř

j Yij is equal to unity; thus Eq. (4.26) is
reduced to

IophKq “ ∆2θ
ÿ

i

yiB. (4.29)

This equation contains no calculated structure factor, F phKq. Accordingly, accurate observed
integrated intensities can be obtained for the isolated reflections provided that intensity data
of high counting statistics are measured with negligible effects of coarse particles and preferred
orientation. On the other hand, YiK contains F phKq. Consequently, the IophKq’s and |FophKq|’s
of overlapped reflections are heavily biased by the structural model in Rietveld analysis and tend
to be too optimistic.
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RB and RF are nevertheless valuable indicators because they depend more strongly on the
fit of the structure parameters than do the other agreement indices. It should be pointed out
that RF closely resembles the reliability index widely used in single-crystal X-ray analysis. Some
workers find this useful in ab initio structure analysis.

4.3.4 Durbin–Watson statistics

The Durbin–Watson statistics, dDW, in the weighted form [124]

dDW “

N
ÿ

i“2

„

yi ´ fipxq

σi
´
yi´1 ´ fi´1pxq

σi´1

2

N
ÿ

i“1

„

yi ´ fipxq

σi

2
(4.30)

and in the unweighted form [125]

dDW “

N
ÿ

i“2

!

ryi ´ fipxqs ´ ryi´1 ´ fi´1pxqs

)2

N
ÿ

i“1

ryi ´ fipxqs
2

(4.31)

are very useful for assessing the reliability of standard uncertainties in Rietveld analysis, by
providing quantitative information about serial correlation in the residuals. Moreover, dDW

is a sensitive measure of the progress of a refinement, and is still discriminating even when
other indices fail. The unweighted form is preferred by some statisticians over the weighted one
proposed by Hill and Flack [124].

This dDW-statistic is sensitive to the misfit of the calculated and observed reflection profiles,
both because their areas may differ as well as their positions and, importantly, because their
shapes may be inherently different. Consider, for example, how dDW would be small for a
symmetric calculated Lorentzian profile used to fit a symmetric Gaussian experimental profile
even if the two profiles had the same peak positions, peak heights and areas.

In the absence of serial correlation, a dDW value close to 2 is expected. For positive serial
correlations, adjacent residuals tend to have the same sign, and dDW will be smaller than 2.
On the other hand, dDW is expected to be larger than 2 and smaller than 4 for negative serial
correlation (alternating signs of adjacent residuals).

The Durbin–Watson statistics, dDW, in the weighted form may be tested against the 0.1 per
cent significance point using the formula:

Q “ 2

„

pN ´ 1qpN ´ nq ´
3.0902

?
N ` 2



, (4.32)

where Q ă dDW ă 4 ´ Q if consecutive terms tend to have uncorrelated, if dDW ă Q or
dDW ą 4 ´Q, consecutive terms tend to have positive or negative serial correlation [126]. The
Durbin–Watson statistics suggest that an optimum value of the step width lies between one-fifth
and one-half of the minimum FWHM of well-resolved reflections.
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4.3.5 Other points to remember on assessment of refinement results

Almost all users may find interesting the paper of Cox and Papoular [127] on reliability indices,
errors, and significance tests. Although ‘Synchrotron Data’ is a part of the title, its content has
much wider potential applicability.

In addition to the above agreement indices, the reliability of the refinement must be checked
on the basis of final structure and lattice parameters. Occupancies and atomic displacement
parameters need to be physically meaningful values; interatomic distances and bond angles
should be reasonable from a crystal-chemical point of view.

4.4 Partial Profile Relaxation

4.4.1 Principle

As described above, we refine not PPPs but SPPs in the least-squares fitting of whole powder
patterns. Equations, such as Eq. (3.65), impose a kind of equality constraints on PPPs, sometimes
failing to express relations between PPPs and θK satisfactorily. As a PPP deviates from an
equation relating it to θK , the fit between observed and calculated profiles gets worse and worse.

We devised a new technique called partial profile relaxation, where the PPPs of (nearly)
isolated reflections specified by the user are locally refined independently of SPPs for structure
refinement from time-of-flight (TOF) neutron powder diffraction data [128,129]. That is, PPPs
are included in variable parameters, x, in Eq. (2.1). Later, we applied this technology to angle-
dispersive X-ray and neutron powder-diffraction data [5]. In Rietveld refinement with partial
profile relaxation, PPPs of these reflections are all or partially freed from equations relating PPPs
to θK and diffraction indices, hkl. On the other hand, peak positions and integrated intensities
for the relaxed reflections are, respectively, calculated from lattice and structure parameters in
the same fashion as those for the other reflections; Refinement of peak positions would lead to
excessive degrees of freedom in least-squares fitting.

As required, part of PPPs may be constrained by the equations applied to reflections not to
be relaxed. Though the profiles of only low-angle reflections can be substantially relaxed except
for very simple structures, better fits in this region lead to improvements in fits in a high-angle
region.

Partial profile relaxation is especially suitable for samples showing anisotropic profile broaden-
ing. This technique is sound and powerful in the point that neither assumption nor approximation
is required in regard to the dependence of PPPs on θK . We can even apply more flexible profile
functions to relaxed reflections to improve the fit between observed and calculated patterns. In
principle, the profile relaxation technology can be introduced not only into Rietveld refinements
but into Pawley [130] and Le Bail [9] refinements.

Profile functions used for partial profile relaxation

In RIETAN-FP, we combined the technique of partial profile relaxation with the two split-type
pseudo-Voigt and Pearson VII profile functions formulated by Toraya [103] (see p. 37). We
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further implemented a modified split pseudo-Voigt function

Gp∆2θiKq “

p1 `Aq

”

ηH `
?

π ln 2 p1 ´ ηHq

ı

ηL `
?

π ln 2 p1 ´ ηLq `A
”

ηH `
?

π ln 2 p1 ´ ηHq

ıˆ

$

&

%

ηL
2

πH1

«

1 ` F pAq

ˆ

∆2θiK
H1

˙2
ff´1

` p1 ´ ηLq

ˆ

ln 2

π

1̇
2 2

H2
exp

«

´ ln 2 ¨ F pAq

ˆ

∆2θiK
H2

˙2
ff

,

.

-

,

(4.33)

where H1 is the FWHM of the Lorentzian component, H2 is the FWHM of the Gaussian
components, and subscripts L and H are the regions of 2θ lower and higher than the peak
position, respectively; F pAq has been defined in Eq. (3.86). Equation (4.33) is effective in the
region ∆2θiK ă 0. For ∆2θiK ą 0, subscripts L and H should be replaced with each other, and
A with 1{A. In Eq. (4.33), The FWHM’s of the Lorentzian and Gaussian components may be
different from each other. The split-type pseudo-Voigt function, Eq. (3.84), of Toraya corresponds
to a special case of Eq. (4.33): H “ H1 “ H2.

Equation (4.33) may be fit to observed profiles of only relaxed reflections. That is, Eq. (4.33)
cannot be applied to reflections in the whole 2θ region whereas Eq. (3.84) is applied to all the
other reflections.

Using partial profile relaxation and the combination of these two pseudo-Voigt functions,
(3.84) and (4.33), we have been successfully analyzing the crystal structures of various compounds
exhibiting reflections in 2θ regions lower than 20˝ (Cu Kα radiation). Profile relaxation with Eqs.
(3.84) and (4.33) usually gives better fits between observed and calculated diffraction patterns.

4.4.2 Applications

In the Rietveld analysis of Sr9In(PO4)7 from the synchrotron X-ray powder-diffraction data
(see 2.3), Eq. (4.33) was used as a profile function. Partial profile relaxation was applied to
four reflections where fits between observed and calculated patterns are relatively poor. The
combination of partial profile relaxation and Eq. (4.33) is responsible for the ultimate goodness-
of-fit demonstrated in Fig. 2.1.

Figure 4.2 is a Rietveld-refinement plot for Sr9.08Ni1.04K0.76(PO4)7 with a β-Ca3(PO4)2-type
structure [131]. X-Ray powder diffraction data were measured at room temperature on a Siemens
D500 powder diffractometer equipped with an incident-beam quartz monochromator to obtain
Cu Kα1 radiation and a Braun position-sensitive detector. Equation (3.84) was fit to each
reflection profile with partial profile relaxation applied to 012, 104, 110, 122, 214, 300, 0210, and
220 reflections to improve fits in these reflections at the last stages of the structure refinements.
Reliability indices were Rwp “ 4.86% (S “ 1.97), Rp “ 3.53%, RB “ 1.50%, and RF “ 0.70%.
As Fig. 4.2 illustrates, a very excellent fit could be achieved between observed and calculated
patterns by use of partial profile relaxation.

Using the technique of partial profile relaxation, we have also been analyzing the crystal
structures of various zeolites and related compounds showing reflections in 2θ regions lower than
20˝. Equation (4.33) proved to be flexible enough to fit highly asymmetric profiles in low-2θ
regions by refining PPPs.

56



CHAPTER 4. OTHER DETAILS RELATED TO RIETVELD ANALYSIS

 

-1

0

1

2

10 20 30 40 50

-1

1

3

5

7

9

10 30 50 70 90 110 130

2θ / ° 

In
te

ns
ity

 (c
ou

nt
s /

 1
04 ) 4 

1 
9 

2 
3 

5 3 
2 

1 

1 
1 

15
, 1

 3
 7

 

3 
1 

5 

1 
3 

1 
2 

2 
3 

1 
2 

5 

2 
1 

1 

1 
1 

3 

Figure 4.2: Observed (plus marks), calculated (solid line), and difference (bottom)
patterns of Sr9.08Ni1.04K0.76(PO4)7. The insets show an X-ray diffraction pattern in
a 2θ range from 10˝ to 50.5˝. Reflections with odd indices, l, are attached with hkl.
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Figure 4.3: Observed (plus marks), calculated (solid line), and difference (bottom) patterns of
hydrated Na-LTA in a low-2θ region

Figure 4.3 exemplifies low-2θ parts of Rietveld-refinement patterns for a zeolite, hydrated
Na-LTA (Linde Type A), with a lattice parameter a as large as 24.61Å [5]. Its X-ray powder-
diffraction data were measured with Cu Kα radiation and two different goniometers equipped
with a pair of Soller slits having angular apertures of (a) 5˝ and (b) 1˝. PPPs of reflections
with their indices attached were relaxed in this 2θ region. On combination with the technique
of partial profile relaxation, Eq. (4.33) was satisfactorily fit to (a) the extremely asymmetric
profiles measured with a conventional X-ray powder diffractometer and (b) fairly symmetric ones
taken on a vertical θ:θ diffractometer equipped with a pair of long horizontal Soller slits.
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IMPOSING RESTRAINTS ON
GEOMETRICAL PARAMETERS

Although high-resolution synchrotron X-ray and neutron powder data can be measured almost
routinely at present, the amount of information in these data is still limited in comparison with
that in corresponding single-crystal data. Rietveld refinements generally converge more slowly,
and it is not possible to refine all parameters together from the start. It is essential to have a
good initial structural model and to proceed with Rietveld refinements slowly and carefully. The
chances of finding false minima increase particularly if the lattice parameters are not initially
well known.

Parameters cannot be refined with small standard uncertainties, in particular when dealing
with compounds showing complex diffraction patterns or severe profile broadening. In such cases,
reflections overlap heavily with each other, the weighted sum of squares, Spxq, does not decrease
sharply near the minimum (flat minimum), and there can be quite a number of false (local)
minima around the global minimum, in particular in compounds containing many atoms in the
asymmetric unit. When the positions of sites for light elements are poorly defined because of the
coexistence of heavy and light elements, the calculated interatomic distances and bond angles
often deviate from crystal-chemically reasonable values.

5.1 Introduction of Pseudo-Observations into Rietveld Analysis

Introduction of a priori geometric and chemical relationships into Rietveld analysis is often very
effective for overcoming the above problems, and needs only the addition of the relationships
and their estimated uncertainties to the observed intensity data [132]. The dependence of bond
lengths on dopant concentrations in solid solutions often serve for estimating occupancies of the
dopant, particularly when the ionic radii of elements occupying the same site are considerably
different from each other [133]. In the case of aluminosilicates, where (Si,Al)´O bond lengths
can be estimated fairly reliably from Al/(Al+Si) amount-of-substance ratios, restraints can be
imposed on the (Si,Al)´O bond lengths [134].

These ‘pseudo-observations’, referred to as restraints (soft/slack constraints), include expected
structural features such as interatomic distances, bond angles, relationships between atomic
displacement parameters, and those between occupancies. Mathematically, there is no difference
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between the pseudo-observations and the X-ray or neutron diffraction data. The weighted sum
of squares, F pxq, can be calculated in a similar fashion [135]:

F pxq “ Spxq `
ÿ

j

„

zj ´ gjpxq

σj

2

, (5.1)

where zj and gjpxq are respectively observed and calculated relationships between parameters,
and σj is the estimated error for zj . Such a function including a penalty term is referred to as
the augmented objective function in the field of nonlinear optimization. Thus, the restraints
supplement the powder-diffraction data, increasing the substantial number of observations
significantly. Such a method is referred to as a penalty function method by regarding the second
term in the right-hand side of Eq. (5.1) as penalty.

Rietveld analysis under restraints leads to a prompt and sure convergence, makes it possible
to refine more structural parameters than conventional analysis, and reduces the possibility of
trapping into a false minimum.

5.2 Penalty Function Method

In RIETAN-FP, nonlinear restraints are imposed on (a) interatomic distances, l12, for atoms 1
and 2, (b) bond angles, φ123, for atoms 1, 2, and 3 with atom 2 as the apex, and (c) dihedral
angles, ω1234, for atoms 1, 2, 3, and 4. The definition of ω1234 will be described in 5.4. The
augmented objective function, F pxq, to be minimized by a nonlinear least-squares method is the
sum of Spxq and three penalty terms, Plpxq for interatomic distances, Pφpxq for bond angles,
and Pωpxq for dihedral angles, multiplied by the penalty parameter, tpJq (J “ 0, 1, 2, ¨ ¨ ¨ ), in the
Jth stage of unconstrained minimization:

F pxq “ Spxq ` tpJq
“

Plpxq ` Pφpxq ` Pωpxq
‰

(5.2)

with
Plpxq “

ÿ

j

wpl12jq
!

min
“

0,∆l12jpxq ´
ˇ

ˇl12jpxq ´ l12jpexpq
ˇ

ˇ

‰

)2
, (5.3)

Pφpxq “
ÿ

k

wpφ123kq

!

min
“

0,∆φ123kpxq ´
ˇ

ˇφ123kpxq ´ φ123kpexpq
ˇ

ˇ

‰

)2
, (5.4)

Pωpxq “
ÿ

l

wpω1234lq

!

min
“

0,∆ω1234lpxq ´
ˇ

ˇω1234lpxq ´ ω1234lpexpq
ˇ

ˇ

‰

)2
. (5.5)

In Eqs. (5.3)–(5.5), wpl12jq is the weight for the jth atom pair, l12jpxq is l12j calculated from
the current structure and lattice parameters for the same pair, l12jpexpq is l12j expected for
the same pair, ∆l12jpxq is the allowance for l12jpxq, wpφ123kq is the weight for the kth atom
trio, φ123kpxq is φ123k calculated from the current structure and lattice parameters for the
same trio, φ123kpexpq is φ123k expected for the same trio, ∆φ123kpxq is the allowance for φ123k,
wpω1234lq is the weight for the lth atom quartet, ω1234lpxq is ω1234l calculated from the current
structure and lattice parameters for the same quartet, ω1234lpexpq is ω1234l expected for the
same quartet, and ∆ω1234lpxq is the allowance for ω1234l. Interatomic distances lying in the
range l12jpexpq ˘ ∆l12jpxq are never penalized because of their reasonable values. Likewise, no
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penalties are imposed on bond angles within the range φ123kpexpq ˘ ∆φ123kpxq or on dihedral
angles within the range ω1234lpexpq ˘ ∆ω1234lpxq.

In Eqs. (5.3), (5.4), and (5.5), penalties for l12j , φ123k, and ω1234l are respectively multiplied
by wpl12jq, wpφ123kq, and wpω1234lq to deal with l12j , φ123k, and ω1234l having a wide range of
values nearly evenly. Weights wpl12jq and wpφ123kq set at null (default value) in hoge.ins are
respectively calculated as

wpl12jq “
1

l12jpxq
(5.6)

and
wpφ123kq “

1

φ123kpxq
. (5.7)

Note that weights must directly be input for dihedral angles because they may be (nearly) equal
to 0˝. In general, wpω1234lq must be small enough to bring a balance between penalties for
dihedral angles and other two kinds of penalties; trial-and-error determination of wpω1234lq is
required to obtain an optimum value.

If tpJq is so small as to give penalty terms much smaller than Spxq, restraints are not well
satisfied. On the other hand, if tpJq is too large, nonlinear least-squares calculations becomes
ill-conditioned for stable convergence, which may lead to the divergence of the solution. In our
experience, Rietveld analysis under nonlinear restraints converge steadily provided that penalty
terms lie in between several% and 10% of Spxq.

Because the three terms in the right-hand side of Eqs. (5.3), (5.4), and (5.5) all have forms
of the sum of squares, conventional methods of nonlinear least squares can be used to refine
x. When imposing restraints on geometrical parameters such as l12j , φ123k, and ω1234l with
the above technique, F pxq becomes steeper near the global minimum than Spxq, increasing the
probability of convergence to the global minimum.

The algorithm of the penalty function method consists of the following four steps:

1. Set J at 0. Give the initial values of x and tp0q.

2. Refine a set of parameters x that minimizes F pxq.

3. If Plpxq, Pφpxq, and Pωpxq in Eq. (5.2) are reduced to nil, stop the calculation since the
current values of x are the solution.

4. Add 1 to J . Increase tpJq by multiplying it by a user-specified constant and return to step
2.

The nonlinear restraints are introduced into the program by means of function subprogram
CON, whose purpose is to calculate one of the following three function from the x vector:

b

wpl12jqmin
“

0,∆l12jpxq ´
ˇ

ˇl12jpxq ´ l12jpexpq
ˇ

ˇ

‰

, (5.8)
a

wpφ123kqmin
“

0,∆φ123kpxq ´
ˇ

ˇφ123kpxq ´ φ123kpexpq
ˇ

ˇ

‰

, (5.9)

a

wpω1234lqmin
“

0,∆ω1234lpxq ´
ˇ

ˇω1234lpxq ´ ω1234lpexpq
ˇ

ˇ

‰

. (5.10)
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Those partial derivatives of the functionals of restraints with respect to refinable parameters
which are used in the set-up of a normal equation (see 4.1.1 and 4.1.2) are approximated by
centered differences, not only to save preparation times in formulating analytical derivatives but
also to avoid human errors.

5.3 Specification of Restraints on Bond Lengths and Angles

RIETAN-FP has a feature to output file hoge.xyz for ORFFE [136] to calculate geometrical
parameters. After dealing with hoge.xyz, ORFFE outputs file hoge.dst as well as hoge.ffe where
serial numbers are added to interatomic distances and bond angles. It should be noted that
hoge.ffe is created only when hoge.ffe is absent in a folder where hoge.ins is located. Geometrical
parameters on which restraints are imposed are specified using these serial numbers. Accordingly,
at least one unconstrained Rietveld refinement should be carried out prior to constrained one
to obtain hoge.ffe. If we want to update hoge.ffe because of appreciable changes in refinable
fractional coordinates, we must remove it prior to the execution of ORFFE.

RIETAN-FP reads in symmetry operations and translations from hoge.ffe and apply them to
fractional coordinates of atoms related to interatomic distances and/or bond angles with the
serial numbers specified by users. This technique of introducing nonlinear constraints with a
reference file output by ORFFE is referred to as ‘Eleonora,’ which is named after a mysterious
short novel by E. A. Poe.

A chemical species plus a serial number, e.g., Fe1, Ti2, and O3, with a maximum length of
25 are input as part of a label for each site in the standard input file, hoge.ins (see 17.3.14). The
‘chemical species’ is alphabetical characters at the top of a site name and not related to any
elemental symbols. Such a manner of assigning a kind of a metadata (data that describes and
gives information about other data) to each site has an advantage that we can distinguish two or
more chemical species with different bond lengths by adopting site names such as

• Car (C within an aromatic ring; ar: aromatic ring)

• Cth (tetrahedral C with an sp3 hybrid orbital; th: tetrahedral)

• Ctr (C with triangular coordination and an sp2 hybrid orbital; tr: triangular)

• Cli (C with linear coordination and an sp hybrid orbital; li: linear)

• Os (O with a single bond; s: single bond)

• Od (O with a double bond; d: double bond)

• Oeq (equatorial O atom bonded to Cu; eq: equatorial)

• Oax (axial O atom bonded to Cu; ax: axial)

• Alt (tetrahedrally-coordinated Al; t: tetrahedral)

• Alo (octahedrally-coordinated Al; o: octahedral).

61



CHAPTER 5. IMPOSING RESTRAINTS ON GEOMETRICAL PARAMETERS

• Fedi (Fe2`; di: divalent).

• Fetr (Fe3`; tr: trivalent)

Each restraint is specified by inputting names of chemical species, minimum and maximum
geometrical parameters, expected value of the geometrical parameter, and an allowance for
the geometrical parameter. Geometrical parameters whose values lie between the minimum
and maximum ones are selected from hoge.ffe and restrained with expected values and allowed
deviations. The minimum geometrical parameter is required to reject extraordinarily short bonds
in split-atom models.

When P´O bond lengths and O´P´O bond angles are respectively restrained within
(1.50 ˘ 0.08)Å and (109.47 ˘ 6)˝, restraints are given as follows:

If LPAIR = 1 then
'A' 'B' l_min l_max l_exp Allowed dev. Weight{
'P' 'O' 1.3 1.7 1.50 0.08 0.0
}

end if

If LTRIP = 1 then
'A' 'B' 'C' phi_min phi_max phi_exp Allowed dev. Weight{
'O' 'P' 'O' 99.47 119.47 109.47 6.0 0.0
}

end if

where LPAIR and LTRIP are flags to specify whether restraints are automatically generated for
bond lengths and angles, respectively, exp is the expected value of a geometrical parameter,
and Allowed dev. is its allowed deviation. Once the restraints is automatically generated, data
specifying restraints imposed on all the geometrical parameters are output to the standard output
file, hoge.lst, in the following way:

I NSCONS EXPCTD DEVDA WDA CALCTD A B C
1 34 1.5000 0.0800 0.000000 1.5314 P O3
2 36 1.5000 0.0800 0.000000 1.5604 P O2
3 37 1.5000 0.0800 0.000000 1.5786 P O2
4 224 109.4700 6.0000 0.000000 108.2086 O3 P O2
5 225 109.4700 6.0000 0.000000 110.1301 O3 P O1
6 226 109.4700 6.0000 0.000000 108.7823 O3 P O2
7 231 109.4700 6.0000 0.000000 110.7484 O1 P O2

In this list, WDA is the weight (in this case, the default value of zero), CALCTD is the geometrical
parameter calculated by ORFFE, and A, B, and C are site names. To customize restraints,
the rectangular part of NSCONS (serial numbers for geometrical parameters output in hoge.ffe),
EXPCTD (Expected value), and DEVDA (Allowed deviation) are copied and pasted in hoge.ins, and
then parts of the data are edited, if necessary.
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5.4 Imposing Restraints on Dihedral Angles

For a sequence of four atoms A, B, C, and D, the dihedral angle, ω, is defined as the angle
between ABC and BCD planes. Let α “ =(B´C´D), β “ =(B´A´D1), and γ “ =(A´B´C),
where D1 denotes the D atom when C´D is translated in such a way that the C atom overlaps
with the A atom. Then, cosω is formulated as [137]:

cosω “
cosα cos γ ´ cosβ

sinα sin γ
. (5.11)

The three angles, α, β, and γ, in this equation can be calculated from the fractional coordinates
of atoms A, B, C, and D1 with Eq. (A.46).

Because ORFFE does not output any dihedral angles in hoge.ffe, restraints imposed about
them are specified not with hoge.ffe but with VESTA [1,25, 26, 138]. To obtain information on a
specific dihedral angle in VESTA [139], a ball-and-stick model is displayed after reading in hoge.ins
or hoge.lst. After the Angle mode has been selected in the Manipulation panel, four atoms, A, B,
C, and D, bonded to each other are selected while pressing the Shift key. Then, a dihedral angle
is output in the text area, followed by four lines giving crystallographic information on the four
atoms. For examples, in the case of C1 (= A), C2 (= B), C3 (= C), and C4 (= D) atoms contained
in an aromatic ring of 3-[4-(dimethylamino)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one [140],
the following five lines

omega(C1-C2-C3-C4) = 2.36(8) deg.
5 C1 C 0.58190 0.79990 0.21900 ( 0, 0, 0)+ x, y, z
7 C2 C 0.52280 0.72240 0.11990 ( 0, 0, 0)+ x, y, z
9 C3 C 0.41240 0.66560 0.09830 ( 0, 0, 0)+ x, y, z
10 C4 C 0.36010 0.68130 0.17850 ( 0, 0, 0)+ x, y, z

are output in a text area below a graphic window (Fig. 5.1). Lines No. 2´5 for the four atoms
include site numbers, site names, chemical species, fractional coordinates (x, y, z), translation
along a, b, and c, and equivalent positions.

To input restraints on dihedral angles in hoge.ins, flag LQUART is at first set at 1; QUART is
the abbreviation of quartet. Next, the four lines (No. 2´5) giving information about the four
atoms are selected, copied, and pasted in hoge.ins with some spaces at the tops of the lines if
necessary. An estimated dihedral angle and its allowed deviation is input in the next line. When
inputting two or more restraints on dihedral angles, quartets of lines are repeated with a vacant
line inserted between two blocks. Finally, ‘}’ (plus a comment) is placed to show the end of
restraints on dihedral angles.

5.5 Performance of Restrained Refinement with RIETAN-FP

RIETAN-FP with the above features is suitable for Rietveld refinements of compounds containing
many atoms in asymmetric units, for example, organic compounds and zeolites. In such cases,
least-squares solutions are often trapped in local minima near initial fractional coordinates even if
we adopt Rietveld analysis using a basically correct structural model, imposing a lot of constraints
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C1

C2

C3

C4

Figure 5.1: Calculation of a dihedral angle for four carbon atoms in an aromatic ring in
3-[4-(dimethylamino)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one with VESTA

or restraints on geometrical parameters. The conjugate-direction method (see 4.1.3), which is
one of the fastest direct-search methods, implemented in RIETAN-FP makes it easier to escape
from local minima relatively easily in combination with Rietveld analysis under restraints.

In nearly all reanalyses from X-ray powder-diffraction data of organic compounds distributed
on the Web with RIETAN-FP, reliability indices have been improved more or less. On further
use of MPF, reliability indices, in particular RB and RF based on integrated intensities, decrease
dramatically. Table 5.1 lists results of reanalyses of three organic compounds from synchrotron
X-ray powder diffraction data [141–143]. The MPF method was not applied to the diffraction
data of Ge(SnMe3)4 because it shows too many reflections to carry out MEM analysis with
PRIMA [13] on Windows XP. Reliability indices were appreciably improved by reanalyzing them
by the Rietveld and MPF methods with RIETAN-FP and PRIMA.
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Table 5.1: Reliability indices (%) obtained in Rietveld refinements and subsequent MPF
analyses (in parentheses) from three sets of synchrotron X-ray powder-diffraction data

Compounds Rwp RB RF Ref.

Ge(SnMe3)4 8.44 – 10.3 [141]
Ge(SnMe3)4 7.86 3.74 3.43 This work

rCrpC7H8q2sC60 10.5 26.5 17.6 [142]
rCrpC7H8q2sC60 6.77 (6.61) 4.03 (1.87) 3.91 (2.33) This work

D-Sorbitol 4.38 1.66 2.18 [143]
D-Sorbitol 2.48 (2.44) 0.88 (0.44) 1.09 (0.49) This work
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REFINEMENT STRATEGIES

When applying the Rietveld method to actual samples, we usually proceed according to the
following procedures (Fig. 6.1).

1. Index reflections in powder-diffraction patterns by using computer programs such as ITO,
TREOR, and DICVOL (available for download from CCP141) and/or selected-area electron
diffraction, and determine possible space groups on the basis of conditions limiting possible
reflections [144].

2. After determining peak positions of reflections, refine lattice parameters by the Pawley
method [130], the Le Bail method [9], or a method of linear least-squares [145]. Rietveld
analysis often does not converge to the global minimum unless the initial values of the
lattice parameters are fairly close to the true values. Accordingly, it is safe to refine the
lattice parameters prior to Rietveld analysis.

3. Roughly infer atomic configurations in the unit cell through structural data described in
the literature, a search for an isomorphous compound or a compound with a similar crystal
structure using a database [146] (see 9), a chemical composition, or the direct observation
of crystal-structure images by HRTEM. Otherwise, ab initio structure analysis [147] has to
be tried.

4. Simulate a powder-diffraction pattern on the basis of the structural model. If the calculated
diffraction pattern is not similar to the powder pattern actually measured, return to step 3
and assemble another structure model.

5. Perform Rietveld refinement. The lattice parameters determined in step 2 are used as
initial values. Use profile parameters for standard samples such as Si (e.g., NIST Standard
Reference Material2 640c) as initial ones unless broadening of diffraction lines due to strain
and particle size is not very marked.

6. Modify the structural model and return to step 5 if reliability indices are not decreased to
sufficiently low values. Fourier or difference Fourier synthesis, and MEM analysis from a set

1http://www.ccp14.ac.uk/
2http://www.nist.gov/srm/
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Figure 6.1: A series of procedures related to Rietveld refinement

of IophKq’s estimated after Rietveld analysis (see 4.3.2) and subsequent 3D visualization of
density distribution are often helpful in this process.

7. If the Bj value of a site is extraordinarily large or small, return to step 5 after checking
the validity of the Wyckoff-position assignment and occupation model for the site. For
example, a split-atom model may give better results.
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8. Calculate interatomic distances and bond angles from structure and lattice parameters
obtained by the Rietveld analysis. Some values of them may be unreasonable in view of
crystal data reported in the literature, typical interatomic distances [148], information on
crystal chemistry [149,150], effective ionic radii [151], bond-valence sums [152,153], charge
distribution [154–156], etc. In such a case, return to step 5 after modifying the structure
model or imposing appropriate restraints on the interatomic distances and/or bond angles
(see 5.2).

For more details of procedures in Rietveld analysis, refer to refs. [157] and [158]. A book
written by Pecharsky and Zavalij [159] also provides us with a variety of information on the
execution of Rietveld analysis.
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QUANTITATIVE ANALYSIS OF
MIXTURES

7.1 Determination of Mass Fractions

Most Rietveld-refinement programs have a feature for dealing with mixtures of two or more phases.
Mass fractions, wp, of phases p can easily be calculated from scale factors, sp (p “ 1, 2, ¨ ¨ ¨ ),
refined by using this multi-phase capability:

wp “
spZpMpVp

ÿ

j

sjZjMjVj
, (7.1)

where Z is the number of the formula unit contained in the unit cell, M is the mass of the formula
unit, and V is the unit-cell volume [37, 38]. The summation is carried out over all the phases
contained in the mixture. The March–Dollase function (3.55) and the modified March–Dollase
functions (3.56) have the advantage that they conserves scattering matter, allowing their use
in quantitative phase determination. In RIETAN-FP, the mole fraction of each phase is also
calculated from Zj ’s and output to the standard output file hoge.lst.

This method does not require any working curves and affords more reliable results than the
conventional method using only a limited number of reflections. Because structure and lattice
parameters are refined at the same time, it is useful as a versatile data-processing method for
powder diffraction.

7.2 Correction for Microabsorption

The above method of calculating mass factions does not take into account any microabsorption
effects. They will be important unless the linear attenuation coefficients, µ are the same, or nearly
so, for all phases being analyzed. Hence, the neglect of microabsorption effects will generally
be a much more serious error in the X-ray powder diffraction case than in the neutron powder
diffraction case.

A beginning effort at providing a microabsorption correction on the analysis of X-ray powder-
diffraction data has been made in RIETAN-FP. It involves the use of a particle absorption factor,
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τp, for phase p:

τp “
1

Ap

ż Ap

0
exp

“

´ pµp ´ µqRp

‰

dA, (7.2)

where Ap is the particle volume, µ is the mean linear attenuation coefficient of the solid matrix
of the powder, and Rp is the effective particle radius.

The linear attenuation coefficient, µp, of phase p is evaluated from the density, ρp, in units of
g cm´3, the mass fractions, wi, of constituent elements, and their mass attenuation coefficients,
pµmqi [160], in units of cm2 g´1:

µp “ ρp
ÿ

i

wipµmqi. (7.3)

The summation is over all the constituent elements. The mass attenuation coefficient, µm, is
sometimes written as µ{ρ.

For this calculation, RIETAN-FP provides us with mass attenuation coefficients, µm, of all
the elements for characteristic X rays (AgKα, MoKα, CuKβ, CuKα, CoKα, FeKα, and
CrKα radiations) [160]; they are given in DATA statements in the source code of RIETAN-FP.
On the other hand, when analyzing synchrotron X-ray powder diffraction data, µm values at
the wavelength of X rays are automatically calculated by interpolating µm/(cm2 g´1) values
(photon energy, E “ 0.001–20MeV) tabulated by Hubbell and Seltzer [161] and saved in a text
file, mac.tbl (see 17.1), in the RIETAN_VENUS folder.

Beware lest virtual chemical species (see 17.3.9) are defined when analyzing X-ray diffraction
data of multiphase samples containing solid solutions by correcting for microabsorption; pµmqi

cannot be calculated correctly on the use of virtual chemical species.
The mean linear attenuation coefficient, µ, [162] is obtained by

µ “

ÿ

j

wj

ˆ

µj
ρj

˙

ÿ

j

wj

ρj

“

ÿ

j

wj pµmqj

ÿ

j

wj

ρj

.

(7.4)

The summation with respect to j is carried out over all the phases contained in the mixture.
Keep in mind that µ is the mean value for the solid material with the spaces between particles
excluded.

Necessarily, such a correction also involves the sizes and shapes, and distributions thereof,
of the particles. Brindley [163,164] proposed a method of correcting for microabsorption from
the relative absorption capacity and the size of spherical particles for each phase contained in a
mixture. Introduction of Brindley’s theory into Eq. (7.1) gives the mass fraction corrected for
microabsorption [165]:

wp “

spZpMpVp
τp

ÿ

j

sjZjMjVj
τj

. (7.5)
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Brindley [163, 164] tabulated τp as a function of µp ´ µ, where µp is calculated from the
chemical formula and mass attenuation coefficients, µ{ρ, of each element, and µ from µp and
the estimated values of wp (p “ 1, 2, ¨ ¨ ¨ ). However, values of τp in Brindley’s table are far from
perfect because of low computational accuracy. For example, τp “ 0.866 at µp ´ µ “ 0.1 and
θ “ 45˝ in Brindley’s table should be 0.86282. Therefore, τp values for θ “ 0˝–90˝ (step: 15˝) were
recalculated over a µp´µ range from ´1 to 1 (step: 0.01), using an Igor Pro macro where formulae
described by Thorkildsen and Larsen [50] were implemented by T. Ida of Nagoya Institute of
Technology.1 The resulting values of τp were included in the source code of RIETAN-FP with a
DATA statement.

In RIETAN-FP, Rp is either determined experimentally, e.g., by scanning electron microscopy
(SEM) or laser scattering or assumed empirically. If the accurate Rp value is known, the resulting
mass fractions are quite precise. However, a wrong particle size will yield results that are less
accurate compared to those obtained without any size correction. The wp value of each phase
is first calculated from sp refined in Rietveld analysis with Eq. (7.1). These wp’s are mere
approximate values because they were obtained without any correction for microabsorption. To
improve wp’s, we adopted the following iterative method. For a start, τp’s are at first determined
by interpolation of data in our table of τp’s described above, and wp’s are calculated from the
resulting τp’s with Eq. (7.5). Then, wp’s are optimized by repeating the calculations of µp ´ µ

and wp until the relative change in µ decreases down to 0.01%.
Bear in mind that setting Rp at 0 leads to neglecting microabsorption and calculating mass

fractions with Eq. (7.1). In this case, input only ’/’ (slash) as follows because initial Rp values
are zero:

# Effective radii for NPHASE@ phases. Enter '/' when neglecting microabsorption.
/

If | pµp ´ µqRp| ą 1, τp cannot be interpolated, which leads to the discontinuance of correcting
for microabsorption. In such a case, the following error message appears in the standard output
of RIETAN-FP:

Too large negative value of [mu - mu(mean)]R

or

Too large value of [mu - mu(mean)]R

Brindley [163] computed τp’s for spherical particles for use as a ‘better than none’ approx-
imation. Of course, a naturally occurring material consisting entirely of spherical particles of
identical size would be rarely found. Nevertheless, the spherical-particle model serves fairly well
in quantitative analysis of crystalline phases.

In the case of a mixture of LiF (60mass%) and Pb(NO3)2 (40mass%) [165], quantitative
analysis without any correction for microabsorption gives mass fractions of LiF (75.3mass%) and
Pb(NO3)2 (24.7mass%) far from the true mass percentages with a µ value of 200.6 cm´1. On

1http://www.crl.nitech.ac.jp/~ida/software/IgorMacro/index.html
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the other hand, when correcting for microabsorption on the assumption that Rp = 5 µm, mass
fractions of LiF (60.4mass%) and Pb(NO3)2 (39.6mass%) comparable to the weighted ones were
obtained after three cycles.

7.3 Quantitative Analysis of Amorphous Phases

Bish and Howard [38] proposed a method to determine the content of an amorphous phase
contained in a sample by adding a crystalline internal standard material, e.g., NIST SRM 674b
(CeO2, Cr2O3, TiO2, and ZnO), weighted on ahead. In RIETAN-FP, if the phase number k of
the internal standard material and its mass fraction wk are input, wp’s corrected for the mass
fractions of the amorphous phase are calculated and output in hoge.lst.

Let define parameter C for the internal standard material s as

C “
ssZsMsVs

ws
. (7.6)

Then, the mass fraction, wp, for a crystalline phase p is obtained by

wp “
spZpMpVp

C
, (7.7)

and that of the amorphous phase a by

wa “ 1 ´
ÿ

p

wp

“ 1 ´
1

C

ÿ

p

spZpMpVp.
(7.8)
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ANALYSIS OF SIMPLE
MAGNETIC STRUCTURES

8.1 Fundamental Procedures for Analyzing Commensurate and
Collinear Magnetic Structures

When a crystallographic unit cell (CUC) does not coincide with a magnetic unit cell (MUC) [166],
Bragg reflections that do not appear in conformity with space-group symmetry are observed in
neutron diffraction patterns. Typical examples are antiferromagnets, where adjacent spins are
anti-parallel with no net magnetization in zero field. In ferrimagnetic materials, e.g., ferrites,
two or more magnetic atoms with magnetic moments of different magnitudes are arranged
anti-parallel, which leads to net magnetization in zero field. Ferrimagnets have MUCs that may
be either the same or larger than the CUCs.

Commensurate magnetic structures of antiferromagnetic and ferrimagnetic materials can be
determined by regarding them as consisting of the following two virtual phases:

1. a CUC phase with F phK , cryst.q ‰ 0 and F phK ,magn.q “ 0,

2. an MUC phase with F phK , cryst.q “ 0, F phK ,magn.q ‰ 0, and a triclinic space group of
P1.

The CUC phase contains all the constituent atoms whereas the triclinic MUC phase contains
only magnetic ones. In other words, the virtual CUC and MUC phases show only nuclear and
magnetic scattering, respectively. Coherent-scattering lengths, bc, of all the magnetic atoms in
the MUC are set at zero, for convenience. For this purpose, all the pure chemical species in the
CUC phase are simply shown by elemental names (e.g., ‘Fe’ and ‘Ni’) whereas those in the MUC
phase are attached with ‘%’ (e.g., ‘Fe%’ and ‘Ni%’). Elements whose names are attached with
‘%’ have bc values of zero and non-zero magnetic form factors, fjpmagn.q. On the other hand,
elements attached with ‘*’ (e.g., ‘Fe*’ and ‘Ni*’) have non-zero bc and fjpmagn.q (see 17.3.9).
Let Me be the elemental name of a metal, then bc and fjpmagn.q have the following values:

In Rietveld analysis of the virtual two-phase mixture (see Chap. 7), appropriate linear
constraints are imposed on scale factors, profile, lattice, and crystal-structure parameters manually
or automatically after each cycle of nonlinear least-squares calculations. Equation (3.49) is used
to calculate F phK ,magn.q’s for the triclinic MUC phase during the Rietveld refinement.
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Name bc fjpmagn.q

Me ‰ 0 “ 0

Me% “ 0 ‰ 0

Me* ‰ 0 ‰ 0

8000

6000

4000

2000

0

In
te

ns
ity

60555045403530252015
2  / °

1/
2 

1/
2 

0

1/
2 

1/
2 

1/
2

3/
2 

1/
2 

0

3/
2 

1/
2 

1

Figure 8.1: Neutron powder diffraction pattern of BiCoO3 below 60˝. Four
reflections to which arrows and reflection indices are attached are magnetic one.

We have to build the magnetic-structure model on the basis of the propagation vector k.
Read Refs. [76,167] for the method of deriving k from hkl indices of magnetic reflections and
constructing possible magnetic-structure model.

In what follows, an example of analyzing the magnetic structure of BiCoO3 [168] will be
additionally described to make the procedures more comprehensive. BiCoO3 is tetragonal
with space group P4mm and lattice parameters of a = 0.3729 nm and c = 0.4724 nm at 5K.
It is an insulator with a Néel temperature, TN, of 470K. Figure 8.1 illustrates a neutron
powder diffraction pattern of BiCoO3 measured on HRPD at the JRR-3 reactor of JAEA with a
wavelength of 1.8233Å. A propagation vector of k = (1/2, 1/2, 0) was derived from indices of some
magnetic reflections observed below TN. BiCoO3 proved to have a collinear antiferromagnetic
structure with magnetic moments of MUC dimensions of a1 “ 2a and c1 “ 2c as illustrated in
Fig. 8.2.

8.2 Standardization of Crystal Data

At first, crystal data input either from a file or by the user in the Structure dialog box are
standardized by selecting [Standardization of Crystal Data] in the Utilities menu and executing
STRUCTURE TIDY [169] (see Chap. 9) embeded in VESTA [25, 26]. In the case of BiCoO3,
the origin is shifted from (0, 0, 0) reported in Ref. [168] to (1/2, 1/2, 0.5669) to give fractional
coordinated listed in Table 8.1. The standardization of the crystal data decreases Γ defined by
Eq. (9.1) from 2.5269 to 1.9916.
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a

c

b

Co

O
Bi

Figure 8.2: Collinear magnetic structure of BiCoO3. Broken lines show
CUCs, and arrows attached to Co3` ions illustrate magnetic moments

Table 8.1: Positions and fractional coordinates of four
sites before (upper) and after (lower) standardization of
crystal data for BiCoO3 by STRUCTURE TIDY

Atom Site x y z

Bi 1a 0 0 0
Co 1b 1/2 1/2 0.5669
O1 1b 1/2 1/2 0.2034
O2 2c 1/2 0 0.7300

Bi 1b 1/2 1/2 0.4331
Co 1a 0 0 0
O1 1a 0 0 0.6365
O2 2c 1/2 0 0.1631

8.3 Conversion of the CUC into the MUC

An MUC including only magnetic atoms is generated in VESTA. All the nonmagnetic atoms
(Bi, O1, and O2 atoms in BiCoO3) are deleted in the [Structure] dialog box, and the [Remove
symmetry] button is clicked to lower space-group symmetry to P1. The resulting triclinic phase
with the MUC is composed of only Co3` ions.

In general, transformation of the coordinate system consists of two parts: a linear part P and

75



CHAPTER 8. ANALYSIS OF SIMPLE MAGNETIC STRUCTURES

Figure 8.3: Inputting arrays P and p used to convert the CUC of BiCoO3 to the
MUC in VESTA

ashift of origin p [170]. After clicking the [Option...] button in Space-group symmetry, a (3ˆ 3)
array P and a (3 ˆ 1) array p to convert the CUC into the MUC are input in the Additional
Lattice Settings dialog box (Fig. 8.3) [171].

We will hereafter attach a prime to each physical quantity relevant to the MUC, e.g., a1 and
x1. Array P is used to change the dimensions and orientation of the CUC into those of the MUC:

`

a1, b1, c1
˘

“ pa, b, cq ¨ P

“ pa, b, cq

¨

˚

˝

P11 P12 P13

P21 P22 P23

P31 P32 P33

˛

‹

‚

“ pP11a ` P21b ` P31c, P12a ` P22b ` P32c, P13a ` P23b ` P33cq . (8.1)

The Miller indices of a plane, (hkl), in direct space are likewise transformed by use of P [170]:

`

h1, k1, l1
˘

“ ph, k, lqP . (8.2)

Array P is fundamental to all the unit-cell transformations. In the case of BiCoO3, a1 “ 2a,
b1 “ 2b, and c1 “ c, which are compared with Eq. (8.1) to afford the following elements of P :
P11 “ P22 “ 2, P33 “ 1, and P12 “ P13 “ P21 “ P23 “ P31 “ P32 “ 0.
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On the other hand, the translation vector

t “ pa, b, cq ¨ p

“ pa, b, cq

¨

˚

˝

p1
p2
p3

˛

‹

‚

“ p1a ` p2b ` p3c

(8.3)

corresponding to translation from the origin is calculated from p. In BiCoO3, the origin of the
CUC coincides with that of the MUC, which gives p1 “ p2 “ p3 “ 0.

All the elements of arrays P and p are later input at the part of information on the virtual
MUC phase in hoge.ins to calculate arrays Q and q (see 8.5).

8.4 Obtaining Information on Magnetic Atoms

Those structure parameters of all the Co sites in the MUC which are displayed at the lowest part
of the [Structure] dialog box in VESTA 31 are those of independent sites for the MUC. In the
case of BiCoO3, they are (0, 0, 0), (0, 1/2, 1/2), (1/2, 1/2, 0), and (1/2, 0, 0). Comparison of
the CUC and MUC (Fig. 8.4) show that these four atoms occupy corners at the z “ 0 level in
the CUC. By selecting the Co sites successively, the following four lines, each of which is followed
by another line containing an occupancy, an atomic displacement parameter, etc., are output in
the text area:

Atom: 1 Co Co 0.00000 0.00000 0.00000 ( 0, 0, 0)+ x, y, z
Atom: 2 Co Co 0.00000 0.50000 0.00000 ( 0, 0, 0)+ x, y, z
Atom: 3 Co Co 0.50000 0.50000 0.00000 ( 0, 0, 0)+ x, y, z
Atom: 2 Co Co 0.50000 0.00000 0.00000 ( 0, 0, 0)+ y, -x, z

(a) (b)
Figure 8.4: Comparison of the (a) CUC phase (BiCoO3) and (b) the MUC phase (Co)
with VESTA

1Use not VESTA 2.4.X but VESTA 3 for the present purpose.
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These four lines are copied into a prescribed position in hoge.ins. RIETAN-FP calculates
fractional coordinates of the four Co atoms in the CUC from those of the Co atom in the
asymmetric unit of the CUC using the symmetry operations and translation vectors contained in
the four lines starting with ‘Atoms:’.

8.5 Conversion of the Unit Cell and Fractional Coordinates in
RIETAN-FP

As described in 8.3, RIETAN-FP calculates the (3 ˆ 3) array Q,

Q “ P´1, (8.4)

which serves to transform the basis vectors of reciprocal space and the (3 ˆ 1) array q

q “ ´P´1 ¨ p (8.5)

from P and p [170] input in hoge.ins. They are used for conversion of the unit cell and fractional
coordinates.

As described in Appendix A, the metric tensors, G and G˚, incorporate information on the
lattice, i.e., the lattice parameters, into a single matrix. With arrays Q and P described above,
G and G˚ can be converted into the metric tensors of the MUC, G1 and G˚1, respectively (see
Appendix A.11).

The fractional coordinates of the magnetic atoms in the CUC are converted into those in the
MUC using Q and q [170]:

¨

˚

˝

x1

y1

z1

˛

‹

‚

“ Q

¨

˚

˝

x

y

z

˛

‹

‚

` q. (8.6)

The anisotropic atomic displacement tensor, β (see Eq. (3.21)), of the CUC can be converted
into that of the MUC, β1, by use of Q and its transposed matrix rQ:

β1 “ Qβ rQ. (8.7)

8.6 Rietveld Analysis with RIETAN-FP

In the part of inputting crystal- and magnetic-structure parameters for the MUC phase, µj
(“ ˘|µj |) is given as the last structure parameter of each site. Furthermore, the structure
parameters and ID(I)’s of the last site are followed by angles, ϕa˚ , ϕb˚ , and ϕc˚ , between
µj and a˚, b˚, and c˚ axes, respectively (see 3.6). You should input initial values of these
magnetic-structure parameters, considering that the component of µj perpendicular to the
reciprocal-lattice vector, sK (“ ha˚ ` kb˚ ` lc˚), i.e., the component parallel to the (hkl) plane
contributes to F phK ,magn.q.

In Rietveld analysis of mixtures, a scale factor is assigned to each phase. Let M be the mass
of the formula unit (f.u.), s the scale factor, Z the number of the f.u. per unit cell, and V the
volume of the CUC. The f.u.(MUC) corresponds to magnetic atoms extracted from f.u.(CUC) [37].
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Because the magnetic material is regarded as a mixture of the CUC and MUC phases in a mass
ratio of M :M 1, the relation

M

M 1
“

ˆ

M

M 1

˙ ˆ

sZV

s1Z 1V 1

˙

(8.8)

is derived from Eq. (7.1). Division of the both sides of Eq. (8.8) by M{M 1 affords

s1 “

ˆ

Z

Z 1

˙ ˆ

V

V 1

˙

s. (8.9)

In the case of BiCoO3, the f.u.(CUC) is BiCoO3 while the f.u.(MUC) is Co. It therefore follows
that s1 “ p1{4qpV {4V qs “ s{16. This linear constraint is input in hoge.ins, with the ID(I) of s1

set at 2.
After each cycle of nonlinear least-square calculations, G˚1 (lattice parameters of the MUC),

the fractional coordinates of all the sites in the MUC, and s1 are, respectively, calculated by
Eqs. (A.48), (8.6), and (8.9). We, therefore, need not input any constraints relating the lattice
parameters and fractional coordinates of the MUC phase to those of the CUC phase. Further,
the profile parameters, occupancies, and atomic displacement parameters of the MUC phase are
simply set equal to those of the CUC phase.

Make a mental note to set the refinement identifiers, ID(I), of profile and lattice parameters,
occupancies, fractional coordinates, and atomic displacement parameters of the MUC phase
at zero (dummy) because they are automatically updated after every cycle of least-squares
calculations.

Rietveld analysis from neutron powder diffraction data measured on HRPD of JAEA at 5K
gave a µj values of 3.24(1)µB for Co atoms at (0, 0, 0) and (1/2, 1/2, 0) and ´3.24p1qµB for those
at (0, 1/2, 0) and (1/2, 0, 0). Figure 8.5 gives the top part of a reflection list output for BiCoO3

after the Rietveld refinement. Phases No. 1, 2, and 3 are, respectively, BiCoO3 (CUC), Co3O4

(impurity), and Co (MUC). Needless to say, |F phK , cryst.q| ‰ 0 and |F phK ,magn.q| “ 0 for
BiCoO3 (CUC) while |F phK , cryst.q| “ 0 and |F phK ,magn.q| ‰ 0 for Co (MUC). In Co (MUC),
11̄0 and 110 reflections with d = 5.26058Å are equivalent to each other, and 11̄1̄, 11̄1, 111, and
111̄ reflections with d = 3.5128Å are actually equivalent ones. All of them have a multiplicity,
mK , of 2 because Co (MUC) formally belongs to P1 (triclinic) with the lowest space-group
symmetry. The |F phK ,magn.q| values of the equivalent reflections should, therefore, be combined
together. It should also be noted that most reflections practically have |F phK ,magn.q| of zero
because their intensities do not contain any contributions of magnetic scattering.

As described above, the feature of analyzing commensurate collinear magnetic structures
by the collaboration of RIETAN-FP and VESTA is quite understandable, straightforward, and
user-friendly. No constraints need to be imposed on the profile, lattice, and crystal-structure
parameters of the MUC phase. Its application to a variety of metal and inorganic materials with
collinear magnetic structures is highly desired.
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            No.   Phase   h    k    l    Code   2-theta        d       Iobs     Ical  |F(nucl)| |F(magn)|    POF     FWHM    m     Dd/d

             1      3     1    0    0     1      14.077    7.43958     W           0    0.0000    0.0000   1.000   0.3634    2   0.05137

             2      3     0    1    0     1      14.077    7.43958     W           0    0.0000    0.0000   1.000   0.3634    2   0.05137

             3      3     1   -1    0     1      19.959    5.26058    25336    23239    0.0000   32.5063   1.000   0.3530    2   0.03502

             4      3     1    1    0     1      19.959    5.26058    25336    23239    0.0000   32.5063   1.000   0.3530    2   0.03502

             5      3     0    0    1     1      22.277    4.71910        0        0    0.0000    0.0000   1.000   0.3766    2   0.03338

             6      1     0    0    1     1      22.277    4.71910    27774    25936    9.5742      -      1.000   0.3766    2   0.03338

             7      2     1    1    1     1      22.539    4.66489     1393     1334   29.6127      -      1.000   0.3105    8   0.02720

             8      3     1    0    1     1      26.449    3.98500        0        0    0.0000    0.0000   1.000   0.3724    2   0.02766

             9      3     0    1    1     1      26.449    3.98500        0        0    0.0000    0.0000   1.000   0.3724    2   0.02766

            10      3     0    1   -1     1      26.449    3.98500        0        0    0.0000    0.0000   1.000   0.3724    2   0.02766

            11      3     1    0   -1     1      26.449    3.98500        0        0    0.0000    0.0000   1.000   0.3724    2   0.02766

            12      1     1    0    0     1      28.373    3.71979       23       32    0.2995      -      1.000   0.3430    4   0.02368

            13      3     0    2    0     1      28.373    3.71979        0        0    0.0000    0.0000   1.000   0.3430    2   0.02368

            14      3     2    0    0     1      28.373    3.71979        0        0    0.0000    0.0000   1.000   0.3430    2   0.02368

            15      3     1   -1   -1     1      30.083    3.51280     2515     3911    0.0000   19.8418   1.000   0.3702    2   0.02404

            16      3     1   -1    1     1      30.083    3.51280     2515     3911    0.0000   19.8418   1.000   0.3702    2   0.02404

            17      3     1    1    1     1      30.083    3.51280     2515     3911    0.0000   19.8418   1.000   0.3702    2   0.02404

            18      3     1    1   -1     1      30.083    3.51280     2515     3911    0.0000   19.8418   1.000   0.3702    2   0.02404

Figure 8.5: Reflection list of the sample comprising BiCoO3 (CUC), Co3O4 (impurity), and
Co (MUC) in the large-d region
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STANDARDIZATION OF
CRYSTAL DATA

9.1 Rules and Indices Adopted in STRUCTURE TIDY

On the use of RIETAN-FP, it is highly desirable for an axis setting and fractional coordinates to be
standardized in compliance with definite rules [172], particularly when refining anisotropic atomic
displacement parameters, βij (see 17.3.16). Even crystal data based on P21{a and P21{n, which
are nonstandard settings of a monoclinic space group P21{c (No. 14) often adopted in a huge
number of papers reporting crystal structures of organic compounds, has to be standardized with
P21{c. For this purpose, STRUCTURE TIDY, which was developed by Gelato and Parthé [169],
was incorporated into RIETAN-FP. Crystal data should be standardized in the simulation mode
(NMODE = 1). Standardization of crystal data is also possible with VESTA [25, 26] under the
Utilities menu.

This feature of standardization of crystal-structure data is particularly useful when searching
for compounds with similar structures using the Inorganic Crystal Structure Database (ICSD)
[146]. Furthermore, STRUCTURE TIDY makes it possible to output the following data in a list
of final structure parameters:

1. site multiplicities,

2. Wyckoff letters,

3. first coordinate triplets of all the sites compiled in chap. 6 of ref. [72],

4. types of linear constraints imposed on anisotropic atomic displacement parameters, βij
(derived from the Wyckoff letters using file constr_beta; see Table 17.1).

In STRUCTURE TIDY and LAZY PULVERIX [66], which was also included in RIETAN-FP,
the following three standard settings are preferred to other settings:

1. monoclinic system: b-axis unique setting (β ‰ 90˝),

2. trigonal system: hexagonal lattice (a “ b ‰ c and γ “ 120˝),

3. centrosymmetric space groups: an inversion center at the origin.
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Needless to say, location of the inversion center at the origin leads to the reduced time of
calculating structure factors (see 3.5.3).

Let n be the number of atoms in the asymmetric unit, and (xj , yj , zj ; j “ 1, 2, ¨ ¨ ¨ , n) their
fractional coordinates, then the standardization parameter, Γ , is defined as

Γ “

n
ÿ

j“1

´

x2j ` y2j ` z2j

¯
1
2
. (9.1)

Note that this equation does not contain occupancies, gj . STRUCTURE TIDY selects a
set of xj , yj and zj (j “ 1, 2, ¨ ¨ ¨ , n) minimizing the Γ value. For better distinction between
different structure-type branches, STRUCTURE TIDY further outputs another standardization
parameter, CG, depending also on lattice parameters:

CG “
1

nV

»

–

˜

a
n

ÿ

j“1

xj

¸2

`

˜

b
n

ÿ

j“1

yj

¸2

`

˜

c
n

ÿ

j“1

zj

¸2

`2ab cos γ

˜

n
ÿ

j“1

xjyj

¸

` 2ac cosβ

˜

n
ÿ

j“1

xjzj

¸

` 2bc cosα

˜

n
ÿ

j“1

yjzj

¸ff
1
2

,

(9.2)

where V denotes the unit-cell volume.
The absolute value of each fractional coordinate to be converted by STRUCTURE TIDY

should be less than unity; otherwise, the corresponding part of the printer output becomes
disordered. If lattice parameters and fractional coordinates of atoms in the asymmetric unit are
changed on the transformation of the crystal lattice, corresponding data in hoge.ins must be
replaced with them. Such replacement is unnecessary if a standard lattice setting has already
been selected.

The following lattice settings are inhibited:

1. c-axis unique settings (γ ‰ 90˝) in the monoclinic system,

2. rhombohedral lattices (a “ b “ c and α “ β “ γ ‰ 90˝) in the trigonal system,

3. centrosymmetric space groups in which the center of symmetry is shifted from the origin
(0, 0, 0).

Crystal axes compatible with STRUCTURE TIDY are indispensable for Rietveld analysis
using RIETAN-FP; otherwise LAZY embeded fails in deriving correct diffraction indices hkl and
their multiplicities mK . For example, suppose that a standard input file, hoge.ins, for Si (space
group: Fd3̄m) is created on the basis of the first setting where Si in the asymmetric unit occupies
the 8a site at (0, 0, 0). Subsequent standardization using STRUCTURE TIDY moves Si from (0,
0, 0) to (1/8, 1/8, 1/8) in such a way that a center of symmetry is present at the origin (second
setting in “International Tables for Crystallography,” Vol. A). When lattice parameters (a and
α) and fractional coordinates based on a rhombohedral lattice are input in a trigonal compound,
STRUCTURE TIDY converts them into lattice parameters (a and c) and fractional coordinates
based on a hexagonal lattice.
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Parts of monoclinic space groups (e.g., C2{m, P2{c, and P21{c) in “International Tables for
Crystallography,” Vol. A have multiple cell choices with the center of symmetry at the origin
and the unique axis of b. In such cases, standardization of crystal data by STRUCTURE TIDY
is highly recommended for safety.

In orthorhombic compounds, the origin may be shifted, and a, b, and c axes may be changed
by STRUCTURE TIDY, which leads to the output of multiplicities plus Wyckoff letters, and
coordinate triplets different from those for the current structure refinement in the list of final
structure parameters in hoge.lst. Just to be safe, standardization of crystal data is always
recommended in orthorhombic compounds.

9.2 How to Standardize Crystal Data

We can standardize crystal data easily by setting NMODE at 1 and putting ‘*’ at the tail of a
Hermann–Mauguin space-group symbol recorded in Spgr.daf, for example,

P 1 21/c 1*

as a second input data for lines concerning each phase. If the last number in each line in Spgr.daf
is a non-zero integer, it means the line number of a line that follows the current line; other
three or four Hermann–Mauguin symbols are recorded in the line with the line number. In the
integrated assistance environments for RIETAN-FP–VENUS (see 16.1.1 and 16.1.2), macros can
be used to open Space_groups.xls (Fig. 9.1) with the Excel book format by Microsoft Excel or
OpenOffice.org (scalc.exe). This file containing all the space-group symbols recorded in Spgr.daf
is much easier to browse. In each space group whose last column is ‘2’, the second setting is the
standard axis setting (the center of symmetry at the origin).

Never delete spaces in the Hermann–Mauguin symbol, which should be copied and pasted
from Spgr.dat or Space_groups.xls onto hoge.ins to avoid careless mistakes. If the names of
space groups for two or more phases are attached with ‘*’, only crystal data of the first phase
are standardized.

In 1992, IUCr changed the Hermann–Mauguin symbols of five orthorhombic space groups
belonging to a base-centered lattice oS as follows:

Table 9.1: Symbols of five orthorhombic space groups with glide planes e

Space-group number 39 41 64 67 68

New symbols Aem2 Aea2 Cmce Cmme Ccce

Old symbols Abm2 Aba2 Cmca Cmma Ccca

A new symbol is output in the standard output, hoge.lst, of RIETAN-FP as a reminder that the
new one containing ‘e’ should formally be used.

In each of pattern-fitting (Rietveld analysis, Le Bail analysis, hybrid pattern decomposition,
MEM-based pattern fitting), space-group symbols and lattice settings derived by STRUCTURE
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Figure 9.1: Browsing a part of orthorhombic space groups recorded in
Space_groups.xls with Microsoft Excel

TIDY must always be input in hoge.ins. Of course, no ‘*’ should be input after the space-group
symbol.

A special rule is applied to labels given to crystallographic sites on the standardization of
crystal data; its details are described in rule No. 7 in 17.3.14.

9.3 An Example of Standardizing Crystal Data

An example of standardization of crystal data is given below. The structure of a high-Tc
superconductor YBa2Cu4O8 is usually represented with the c axis perpendicular to the CuO2

conduction sheet and space group Ammm (No. 65) [173]. However, the standard setting described
in “International Tables for Crystallography,” Vol. A [72] is Cmmm; Rietveld analysis with
RIETAN-FP has to be carried out on the basis of Cmmm. To transform crystal data for Ammm
into those for Cmmm and then standardize fractional coordinates, we need to input a space-group
name as

HKLM = 'A m m m*': Crystal data based on the Hermann-Mauguin symbol ¨ ¨ ¨

and then lattice and structure parameters as given in hoge.ins:

CELLQ 3.8402 3.8708 27.2309 90.0 90.0 90.0 0.0 1110000

Y/Y 1.0 0.5 0.5 0.0 0.49 00001
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Ba/Ba 1.0 0.5 0.5 0.13502 0.48 00011
Cu1/Cu 1.0 0.0 0.0 0.21296 0.43 00011
Cu2/Cu 1.0 0.0 0.0 0.06138 0.30 00011
O1/O 1.0 0.0 0.0 0.14562 0.73 00011
O2/O 1.0 0.5 0.0 0.05253 0.55 00011
O3/O 1.0 0.0 0.5 0.05214 0.47 00011
O4/O 1.0 0.0 0.5 0.21822 0.77 00011

Running RIETAN-FP, we obtain optimum crystal data based on space group Ammm at the tail
of hoge.lst:

Axes changed to : b,c,a

Setting x,y,z origin 0.00000 0.00000 0.00000 gamma = 2.9785

( 65) C m m m - j2 i5 c oS30
-------------------------------------------------------------------------
DATA YBa2Cu4O8 2.9785 0.7284
CELL 3.8708 27.2309 3.8402 *
ATOM O1 4(j) 0 0.05253 1/2 O2
ATOM Ba 4(j) 0 0.36498 1/2 Ba
ATOM Cu1 4(i) 0 0.06138 0 Cu2
ATOM O2 4(i) 0 0.14562 0 O1
ATOM Cu2 4(i) 0 0.21296 0 Cu1
ATOM O3 4(i) 0 0.28178 0 O4
ATOM O4 4(i) 0 0.44786 0 O3
ATOM Y 2(c) 1/2 0 1/2 Y
TRANS b,c,a
REMARK Transformed from setting A m m m.

The first line means that STRUCTURE TIDY converted a, b, and c axes in Ammm into b, c, and
a axes in Cmmm, respectively. The value of 2.9785 is the standardization parameter ‘gamma’,
the last data, 0.7284, in the ‘DATA’ line is CG, and the last data of each site is the site name
input in hoge.ins.

Then, we change the space-group symbol in hoge.ins as

HKLM = 'C m m m': hkl and m are generated from the Hermann-Mauguin symbol.

and proceed to Rietveld analysis after inputting the above standardized lattice and structure
parameters. As mentioned in the above comment line, LAZY PULVERIX [66] generates reflection
indices, hK , and multiplicities, mK , from the Hermann–Mauguin symbol using a routine written
by Burzlaff and Zimmermann [174].
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LE BAIL ANALYSIS

10.1 Principle of the Le Bail Method

Whole-pattern decomposition, where lattice parameters and |FophKq|2’s are determined from
whole powder diffraction data is becoming more and more important as a main step in ab
initio structure analysis. The Le Bail method [9] is a representative method of whole-pattern
decomposition without the use of a structural model.

Parameters refined in Le Bail analysis are SPPs, peak-shift parameters, lattice parameters,
and background parameters. No integrated intensities, |F phKq|2, are refined in contrast to
another representative method of whole-pattern decomposition: the Pawley method [130]. In Le
Bail analysis, we refine the above variable parameters by a method of nonlinear least squares,
giving a set of initial integrated intensities, |F phKq|2. After each cycle (not after the whole
Le Bail analysis) of successive refinement cycles, |FophKq|2 data are estimated on the basis of
current parameters. Thus, the Le Bail method is characterized by two-step refinements in each
cycle, as illustrated in Fig. 10.1.

Wilson statistics
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Figure 10.1: Flow chart of Le Bail analysis
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RIETAN-FP enables us to carry out Le Bail analysis

1. with initial integrated intensities estimated by Wilson’s statistics,

2. with the same initial integrated intensities (“ 100),

3. with initial integrated intensities input from a file hoge.ffi

(a) and varied during least-squares fitting,

(b) and kept constant during least-squares fitting (in a manner different from Le Bail
analysis),

4. into which a partial structure is introduced.

10.2 Initial Values of Integrated Intensities

Strictly speaking, we should state |F phKq|2 instead of “integrated intensities.” Initial values of
|F phKq|2 for Le Bail analysis are given in the following three ways.

1. |F phKq|2 data for all the reflections are set at a constant value (e.g., 100) [9].

2. |F phKq|2 data are estimated by Wilson’s statistics [8, 175].

3. |F phKq|2 calculated on the basis of a partial structure which has been revealed by ab initio
structure analysis [175].

In the second option, |F phKq|2 is estimated with

|F phKq|2 “
yp2θKq ´ ybp2θKq

smKLpθKq
ÿ

j

Gp∆2θKjq
, (10.1)

where yp2θKq is the observed intensity at the peak position of 2θK , Gp∆2θKjq is the value of the
profile function for reflection K at 2θK , and the summation is carried out over all the Bragg
reflections contributing to yp2θKq. Since option 3 cannot be regarded as pure Le Bail analysis, it
will be described in 10.5. Then, whole-pattern fitting where |F phKq|2 data are fixed and updating
of |F phKq|2 data are repeated to refine SPPs, lattice and background parameters, which lead to
iterative refinements of |F phKq|2 for overlapped reflections. In such a case, |F phKq|2 necessarily
remains near its initial values.

10.3 Successive Two-Step Refinements

Next, we proceed to whole-pattern fitting. As described above, |F phKq|2 data are not refined by
fixed in least-squares fitting. After each cycle, IophKq is calculated with Eq. (4.26) from a set of
refined parameters x and converted into |FophKq|2 with

|FophKq|2 “
IophKq

smKLpθKq
(10.2)
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which is derived by substituting 1 for PK in Eq. (4.24). The resulting |FophKq|2 data are used
as |F phKq|2 in the next cycle.

In the case of an isolated reflection, accurate |FophKq|2 is, of course, obtainable if ybp2θiq’s in
the profile range of reflection K are accurate enough. On the other hand, overlapped reflections
where peak positions are fairly separated from each other, |FophKq|2 data approach from initial
values to true ones gradually. As in the Pawley method [130], the accuracy of |FophKq|2 is
lowered with increasing degree of overlapping of reflections.

Since |F phKq|2 data are not refined in the Le Bail method, the size of arrays contained in the
normal equation is generally small. Equation (4.26) is included in every modern Rietveld analysis
program because it is a numerical-integration equation proposed by Rietveld for calculating two
reliability indices, RB and RF , after Rietveld analysis. Hence, it is very easy to implement Le
Bail analysis in a Rietveld analysis program; the Le Bail method has gone mainstream as a
method of whole-pattern decomposition.

|F phKq|2 depends on s because Eqs. (10.1) and (10.2) contain s, Though refining s seems
to be meaningless in the absence of a structural model, s may be refined or fixed, with a result
that |F phKq|2 data obtained by Le Bail analysis practically contains s. On the construction of a
possible structural model by direct or Patterson (heavy-atom) methods after Le Bail analysis,
the absolute measure of |F phKq|2 must be at first determined by Wilson’s statistics [176], which
is also the case with the determination of IphKq and |F phKq|2 by the Pawley method.

10.4 Characteristics of the Le Bail Method

The Le Bail method by which |F phKq|2’s are not refined by a least-squares method has the
following advantages over the Pawley method [130]:

1. Its algorithm is relatively simple.

2. Because sizes of matrices in the normal equation, Eq. (4.1), are much smaller than those
in Pawley’s one [177] owing to the absence of refinable observed integrated intensities,
least-squares calculations are fairly rapid.

3. No negative values of IphKq result from Le Bail analysis.

However, initial lattice parameters for Le Bail’s method should be known with a greater
precision than in Pawley’s method. Another disadvantage of the Le Bail method is that |F phKq|2

for overlapped reflections tend to converge near their initial values in the same way as with the
Pawley method. In other words, |F phKq|2 data of overlapped reflections strongly depend on
initial |F phKq|2’s. It is these initial values that hold the key to getting accurate |F phKq|2 data
by the Le Bail method.

10.5 Le Bail Analysis Introducing a Partial Structure

In Le Bail analysis where IphKq’s are not refined by a method of least squares, we need not
impose constraints of equi-partition on a group of heavily overlapped reflections. A high degree
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of superposition necessarily leads to equi-partition (or close enough to it) of observed Bragg
intensities.

We can improve initial |F phKq|2’s by introducing a partial structure into Le Bail analysis. If
parts of atom positions can be obtained by direct or heavy-atom methods, |F phKq|2’s calculated
from them are improved in comparison with those determined in the three different ways described
in 10.2. Then, the accuracy of |F phKq|2’s resulting from Le Bail analysis will be raised, which
may increase the possibility to reach the real structure. For example, when analyzing X-ray
powder-diffraction data of a compound containing both heavy and light elements, the initial
values of |F phKq|2 approach the true ones considerably after the positions of the heavy atoms
have been known at any rate. Consequently, the accuracy of |F phKq|2’s obtained by the Le Bail
method is effectively improved.

Note that the scale factor s, which may be considerably changed by introducing a partial
structure, has to be appropriately adjusted to achieve the convergence of Le Bail analysis, if
necessary.

10.6 How to Use the Le Bail Method with RIETAN-FP

On the execution of conventional Le Bail analysis (NMODE = 4), conventional Le Bail refinement
is applicable only to the first phase whereas conventional Rietveld refinement is applied to the
other phases, if any. This means that no structure parameters should be input for the first phase
when NMODE = 4.

In Le Bail refinement into which a partial structure is introduced (NMODE = 5), structure
parameters should be given for all the phases because initial integrated intensities are calculated
from these structure parameters. Refinement identifiers, ID(I), for the first phase should be fixed
at zero.

A file named hoge.ffo is always created after Le Bail refinement. Only reflections for which
normal values of |F phKq|2, i.e., Iobs described in 17.8.10, have been obtained are output to
hoge.ffo. If hoge.ffo is renamed hoge.ffi, integrated intensities are input from that file when
NSFF = 1. Both hoge.ffo and hoge.ffi are compatible with hoge.hkl for SIRPOW [178] for resolving
the phase problem by the direct method.

It is highly recommend that in the first Le Bail refinement, initial integrated intensities are
estimated by means of Wilson’s statistics (NSFF = 0). In subsequent Le Bail analyses, integrated
intensities are usually input from hoge.ffo by setting NSFF at 1.

Be sure that 2θ ranges in which profile functions are calculated should be narrow enough
during an initial stage to estimate background intensities appropriately. For this purpose, a
coefficient named CHGPC is input in hoge.ins.

The top part of hoge.ffo output after Le Bail analysis of BaSO4 from X-ray powder-diffraction
data taken with Cu Kα1 radiation is given below (some spaces between data were removed, for
convenience):

h k l FWHM |F|^2 d 2-theta I I/I1 Io
1 0 1 0.0723 5.32920 5.5694 15.900 0.244691 2.5 0.239582
2 0 0 0.0738 110.467 4.4378 19.992 1.58814 15.9 1.58012
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0 1 1 0.0740 94.5744 4.3362 20.465 2.59164 25.8 2.57909
1 1 1 0.0750 101.516 3.8961 22.806 4.44986 43.6 4.41452
2 0 1 0.0753 54.2373 3.7710 23.574 1.10999 10.8 1.11123
0 0 2 0.0759 347.148 3.5765 24.876 3.17701 30.7 3.16799
2 1 0 0.0764 588.136 3.4418 25.865 9.92449 95.0 9.97043
1 0 2 0.0768 510.676 3.3173 26.854 7.96783 75.7 7.97827
2 1 1 0.0778 395.207 3.1014 28.762 10.6791 100.0 10.5879
1 1 2 0.0792 257.478 2.8340 31.544 5.72508 52.4 5.66617
.....

In hoge.ffo, hkl, HK , |FophKq|2, d, 2θK , IphKq, the relative peak intensity (I/I1; I1: the peak
intensity of the strongest reflection), and IophKq are recorded in a form which can be input by
RIETAN-FP and EXPO [22]. EXPO inputs only hkl, HK , and |FophKq|2; the remaining data
are dummy ones, in this case.

Fits in parts of 2θ regions often remain worse because of negligibly small shifts in integrated
intensities of partial reflections at the final stage of Le Bail analysis. In such cases, the use of
hybrid patter decomposition (see Chap. 11), where only integrated intensities are refined after
Le Bail analysis, is highly recommended.

10.7 Feedback of Results Obtained by the Maximum-Entropy
Patterson Method

ALBA [20, 21] (see 14.7.1) outputs a text file, hoge.ffi, storing |F phKq|2 determined by the
maximum-entropy Patterson method [21], where Patterson functions are dealt with by the
maximum-entropy method to improve |F phKq|2 data of overlapped reflections in comparison with
those obtained by conventional pattern-decomposition techniques such as the Le Bail method [9]
and the Pawley method [130]. Then, we can get much better |F phKq|2 data, starting from those
in hoge.ffi output by ALBA. The MEP method will be further described in 11.7.

Figure 10.2 shows a flow chart of ab initio structure analysis by the combined use of
EXPO–RIETAN-FP–VENUS. Though automatic Le Bail analysis with EXPO [175] is very
convenient and practical, the fit between observed and calculated patterns is not the greatest.
Therefore, reanalysis with RIETAN-FP using |FophKq|2 estimated by EXPO as initial values is
highly recommended. On the use of ALBA, we must always reanalyze because σ p|FophKq|q’ are
indispensable for the maximum-entropy Patterson method; As shown in p. 89, the output file,
hoge.ffo, of RIETAN-FP contains IophKq from which ALBA can calculate σ p|FophKq|q with Eq.
(14.18).

Improvements of |F phKq|2 by ALBA will significantly help us to derive an approximate
structural model by EXPO. Le Bail analysis introducing a partial structure may further improve
|FophKq|2’s; a utility program called res2ins (see 17.3.18) is convenient when introducing the
structural model into hoge.ins. Once a structural model has been obtained, the subsequent
Rietveld analysis, MEM/Rietveld analyses, and 3D visualization of electron densities will proceed
smoothly by combination of RIETAN-FP, Dysnomia [17,23], and VESTA [25,26]. As described
in 14.6, the MEM/Rietveld method is very effective for modification of a structural model.
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Figure 10.2: Flow chart of ab initio structure analysis by combination of
EXPO–RIETAN-FP–ALBA–Dysnomia–VESTA
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Chapter 11

HYBRID PATTERN
DECOMPOSITION

11.1 Four-Step Estimation of Integrated Intensities

Unfortunately, the routine implemented in RIETAN-FP for Le Bail analysis (see Chap. 10) has
not been widely utilized as yet because of issues with convergence performance and convenience.
In Le Bail analysis using RIETAN-FP, 2θ ranges of calculating diffraction profiles have to be
expanded step by step to minimize the influence of neighboring reflections on the resulting
integrated intensities. Furthermore, once observed structure factors fall in inappropriate values,
they tend to remain there, which leads to worse local fits between observed and calculated
patterns.

Then, a new feature called hybrid pattern decomposition was added to RIETAN-FP in an
effort to achieve performance higher than that in existing programs. This original technique can
be applied to powder diffraction data measured with monochromatic beams (synchrotron X rays,
Kα1 and Cu Kβ characteristic X rays, constant-wavelength neutrons) and Cu Kα characteristic
X rays (Kα1 + Kα1).

Procedures for hybrid pattern decomposition consist of the following four steps:

1. creation of a background file, hoge.bkg,

2. Le Bail analysis,

3. individual profile fitting where only integrated intensities, |F phKq|2, are refined by the
conjugate direction method [118],

4. Le Bail analysis where parameters with ID(I) = 1 are simultaneously refined by the
modified Marquardt method [113].

Step 3 will hereafter be referred to as “refinement of integrated intensities,” for simplicity. In
hybrid pattern decomposition, the first Le Bail analysis (Step 2) and the refinement of integrated
intensities (Step 3) play complementary roles with each other, giving the best fit finally. The
second Le Bail analysis (Step 4) gives standard uncertainties of refinable parameters, decreasing
Rwp a little. Only one cycle of the least-squares refinement is executed because experience shows
that Spxq usually increases in the second cycle.
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In what follows, techniques to converge pattern decomposition stably and steadily will be
described with an illustration of dealing with a set of files, hoge.* (hoge.ins, hoge.int, hoge.bkg,
etc.). Finally, section 11.7 deals with an additional method of analyzing integrated intensities
resulting from hybrid pattern decomposition by the maximum-entropy Patterson method with
ALBA to overcome the tendency of the Le Bail method toward equi-partition for overlapped
reflections.

11.2 Preparation of a Background File hoge.bkg

Initial background intensities need to be accurate enough to converge Le Bail analysis stably. If
the initial background level is fairly different from the true one, errors in integrated intensities
in an early stage of Le Bail analysis necessarily increase, which hinders stable convergence. In
hybrid pattern decomposition, background intensities are, at first, roughly estimated by a simple
method proposed by Sonneveld and Visser [106].

In their method, about 5% of the data (every twentieth point) need to be picked up for
the background determination. The resulting n sample points can be considered to be a first
approximation of the background. This approximation is far from perfect because some samples
are taken from places where Bragg reflections are observed. The approximation is, therefore,
improved according to the following iterative procedure:

1. Pick up sample points, pi (i = 1, 2, 3, ..... n´ 1).

2. Calculate mi “ ppi`1 ` pi´1q{2.

3. If pi ą mi ` c, Pi is replaced by mi.

4. Return to step 1.

The parameter c depends on the curvature of the background. In the case of powder diffraction
data from photographs with an intensity scale from 0 to 255, c was found to be approximately
equal to 0.02 [106]. In this way, every point of the background curve is replaced by the mean
of its neighbors if the latter has a lower value. Repeating the whole procedure about 30 times
affords shifts small enough for the procedure to be stopped.

Background intensities are either fixed at the values resulting from the above procedure or
represented with the composite background function, Eq. (3.107), which improves goodness-of-fit
most surely.

NRANGE (see 3.12) is set at 2 (fixed at values recorded in hoge.bkg) or 3 (the product of
values given in hoge.bkg and the Legendre polynomial). RIETAN-FP inputs hoge.bkg if it exists;
for example, hoge.bkg may be created using PowderX [104,105]. On the other hand, RIETAN-FP
creates hoge.bkg with the Igor text format (see 17.5.2) only in the absence of hoge.bkg. To create
hoge.bkg, confirm the absence of hoge.bkg and then input the following three parameters in
hoge.ins:

1. NPICKUP: Intensity data are taken out in every NPICKUP-th points for background esti-
mation.
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2. NREPEAT: A repeating number for background determination.

3. CURVATURE: A constant to take into account the curvature of the background.

The parameter c related to the curvature of the background is set at (the largest diffraction
intensity)ˆCURVATURE. In the case of powder diffraction data measured with photographs, c was
approximately equal to 0.02 on the intensity scale from 0 to 255 [106], which corresponds to a
CURVATURE value of 7.843E-5. An appropriate value of CURVATURE can be determined through a
trial and error process. On the use of the Bragg–Brentano geometry where the background are
relatively flat, CURVATURE may be set at zero.

Igor Pro1 can input the resulting file, hoge.bkg, by selecting

Load Waves § Load Igor Text...

under the Data ą menu. Then, observed and background intensities are automatically plotted
against 2θ to check whether the background curve is appropriate.

11.3 Input Data Related to Le Bail Analysis

Background parameters should be input in the following way:

BKGD 1 0 0 0 0 0 0 0 0 0 0 0 111111111111

which makes initial background intensities practically the same as those in hoge.bkg to enhance
the accuracy of initial integrated intensities estimated by means of Wilson’s statistics [8, 175].
The number of refinable background parameters may be appropriately decreased, depending on
the complexity of the background.

The scale factor may be refined or fixed while no preferred orientation is corrected:

PREF 1.0 1.0 0.0 0.0 0.0 0.0 000000

Structure parameters and linear constraints imposed on them with ID(I) = 2 are commented
out or deleted.

Further, various flags are set as follows:

NMODE = 4: Conventional Le Bail analysis.
NINT = 1: General (X-Y) format.

NRANGE = 3: Background = (background in hoge.bkg) * (Legendre polynomials).
NSFF = 0: Estimated according to the Wilson statistics.

NLESQ = 0: Marquardt method (recommended in most cases).
NAUTO = 2: Refine incrementally (automatic; recommended in most cases).

NC = 0: No nonlinear restraints are imposed on geometric parameters.
LSER = 0: Input site names for restrained bond lengths/angles.

LQUART = 0: Input no quartets of atoms related to restrained torsion angles.

NRANGE = 3 corresponds to the specification of the composite background function, i.e., Eq.
(3.107).

1http://www.wavemetrics.com/
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11.4 Input Date Related to the Refinement of Integrated Inten-
sities

In the local refinement of integrated intensities, profile, lattice, and background parameters are
fixed at those refined in the preceding Le Bail analysis, integrated intensities determined by the
Le Bail analysis are used as initial ones, and integrated intensities that minimize the weighted
error sum of squares in limited ranges of intensity data are successively obtained by the conjugate
direction method [118] (see 4.1.3). In the case of integrated intensities estimated by the Le Bail
method, fits in 2θ regions where serial correlations are considerably improved. The weighted
error sum of squares is minimized by the conjugate-direction method because programming is
relatively easy and the solution is hardly trapped in local minima.

The whole powder diffraction pattern is automatically divided into many parts on the basis of
2θ ranges to calculate diffraction profiles (profile cutoff) and numbers of reflections that appear
in each 2θ region. Because individual profile fitting by the conjugate-direction method generally
becomes slower with increasing number of reflections in each 2θ region, each region contains up
to a dozen or a little more reflections. Repetition of local pattern fitting is required because of
the following two reasons:

• Contributions of integrated intensities of reflections to the weighted error sum of squares
should be large enough.

• In the conjugate-direction method, convergence is slowed down with increasing number of
variable parameters (integrated intensities in the present case).

Data associated with the refinement of integrated intensities are input in the following part
of hoge.ins:

NOPT = 0! No |F|^2's are refined after Le Bail analysis.
NOPT = 1: |F|^2's are refined after Le Bail analysis.

If NOPT = 1 then
MREG = 10: Maximum number of reflections in each group of overlapped reflections.
RWID = 0.350: |F|^2's of reflections with Delta.2-theta < RWID*FWHM are set equal.
XMAX = 135.0: |F|^2's are refined up to XMAX/degrees.
WNEG = 1.0E11: Weight to suppress negative |F|^2's.

end if

If NOPT = 1, conventional Le Bail analysis is followed by the refinement of integrated intensities.
MREG is an integer to limit the number of reflections in each group of overlapped reflections.

The actual number of reflections is greater than or equal to MREG because it is recalculated
from profile cutoffs after dividing the whole 2θ pattern into many parts. If the difference, ∆2θ,
in the peak positions of two reflections is less than RWIDˆFWHM, their integrated intensities
can hardly be refined independently owing to extremely high correlations among them. Their
integrated intensities are, therefore, regarded as being equal to each other, which is referred to
as “equipartition.”
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XMAX is 2θmax in the 2θ region where integrated intensities are refined in hybrid pattern
decomposition. Small-d reflections are not very useful in ab initio structure analysis by a real-
space method because of the heavy overlap of reflections and decreases in diffraction intensities
in the high-Q region. A relatively low 2θmax is, therefore, sufficient in the real-space method. On
the other hand, the direct method [22] and the charge-flipping method [179] require a resolution
of at least d “ 1.1Å.

Parts of integrated intensities refined by the conjugate-direction method often converge at
physically meaningless negative values. In RIETAN-FP, the appearance of negative integrated
intensities is avoided by a penalty-function method. Let x (x1, x2, ..... xj , .....) be a set of
integrated intensities of grouped reflections, wneg (= WNEG) the weight for the penalty imposed on
negative integrated intensities, then the weighted error sum of squares, Spxq, in each 2θ region is
formulated as

Spxq “
ÿ

i

wi ryi ´ fipxqs
2

` wneg

ÿ

j

“

min p0, xjq
‰2
. (11.1)

It is |F |2’s of reflections included in the present 2θ region that are refined by the conjugate-
direction method. If a sufficiently large value of WNEG is input to increase the second term in the
right-hand side of Eq. (11.1), i.e., the penalty function, reflections with xj ă 0 disappear in this
region.

Setting NRINT at 1 helps to determine an appropriate value of WNEG. In the following example
of a group containing reflections No. 66–76, refined integrated intensities, |F1|**2, for reflections
No. 74–76 were made positive by setting WNEG at 1.0E30. Equal signs, ‘=’, before |F1|**2 mean
that the integrated intensities are constrained to be equal to those which are not preceded by ‘=’.

No. h k l 2-theta d FWHM |F0|**2 |F1|**2
.....
---------------------------------------------------------------------------

66 8 8 0 22.248 2.2028 0.0622 4372.58 4404.86
67 3 11 1 22.511 2.1775 0.0626 186.187 187.661
68 11 3 1 22.511 2.1775 0.0626 186.187 = 187.661
69 9 5 5 22.511 2.1775 0.0626 186.187 = 187.661
70 7 9 1 22.511 2.1775 0.0626 186.187 = 187.661
71 9 7 1 22.511 2.1775 0.0626 186.187 = 187.661
72 8 8 2 22.598 2.1692 0.0627 286.435 285.951
73 10 4 4 22.598 2.1692 0.0627 286.435 = 285.951
74 8 6 6 22.942 2.1371 0.0633 0.00000 3.157724E-10
75 6 10 0 22.942 2.1371 0.0633 0.00000 = 3.157724E-10
76 10 6 0 22.942 2.1371 0.0633 0.00000 = 3.157724E-10

---------------------------------------------------------------------------

11.5 Execution of Hybrid Pattern Decomposition

Editing hoge.ins as described above is followed by hybrid pattern decomposition. Partial profile
relaxation (see 4.4) may be applied to (nearly) isolated reflection, if necessary. Reliability indices
are output after both of the two Le Bail analyses.
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The preliminary hybrid pattern decomposition is usually followed by analyses where PC or
CHGPC are changed a little to check changes in the reliability indices. After minimization of Rwp,
change NUPDT in the following way to update variable parameters:

NUPDT = 1: Variable parameters (ID = 1, 2) are updated in the packing mode.

Then, CHGPC should be restored to 1.0.
Reliability indices may be somewhat improved by setting NSFF at 1, changing hoge.ffo into

hoge.ffi, and repeating Le Bail analysis and refinement of integrated intensities once more.
However, reliability indices sometimes increase apparently because the refinement of profile
parameters etc. and repartition of integrated intensities are simultaneously executed during the
course of Le Bail analysis.

An elaborate technique to improve fits comprises the following steps. At first, profile, peak-
shift, lattice, and (if possible) background parameters are refined with flag settings of NSFF = 1,
NCONST = 1, NOPT = 0, and NLESQ = 2 with any value of MITER. Then, only integrated intensities
are refined with flag settings of NCONST = 0, NOPT = 1, NLESQ = 0, and NCYCL = 1. The previous
file, hoge.ffi, is deleted, and hoge.ffo is renamed hoge.ffi, and the above procedure is repeated,
which makes it possible to improve fits to the limit. If convergence has been attained to some
extent, pattern decomposition where profile parameters and integrated intensities are optimized
may increase reliability indices. In general, executing

1. the refinement of various parameters while fixing integrated intensities

2. the refinement of integrated intensities

after the first hybrid pattern decomposition will lead to stable convergence.
Because the shape of the background is relatively simple in the case of flat-plate samples,

the refinement of background parameters with no use of hoge.bkg (NRANGE = 0) may give better
results than the use of hoge.bkg (NRANGE = 0 or 3). Fixing integrated intensities with NCONST = 1

may be useful in such a process.
In general, hybrid pattern decomposition, which affords better reliability indices than conven-

tional Le Bail analysis, is quite helpful in constructing structural models by the direct method
with EXPO [22] and charge flipping [180–182] with superflip2 [179].

File hoge.ffo output after hybrid pattern decomposition is compatible with instruction REF2

(DATA routine) in EXPO [22] and can be dealt with EXPO directly. If NEXP is set at 1, RIETAN-
FP creates an input file for EXPO, hoge.exp, where the name of hoge.ffo is recorded after REF2
in the %data block, e.g.,

%data
pattern Fapatite.int
> Change the following line if necessary:
filetype xy
cell 9.36906 9.36906 6.88389 90.00000 90.00000 120.00000
2http://superflip.fzu.cz/

97

http://superflip.fzu.cz/


CHAPTER 11. HYBRID PATTERN DECOMPOSITION

content Ca 10 P 6 O 24 F 2
spacegroup P 63/m
wavelength 1.540593
> Change the extension of the following file if necessary:
>ref2 Fapatite.ffo

If necessary, hoge.exp is appropriately modified by a text editor such as Hidemaru Editor and
Jedit X to be input by EXPO, which will derive possible candidates of structural models from
data recorded in hove.exp. On use of |F |2 data obtained with RIETAN-FP, ‘>ref2 BaSO4.ffo’
must be uncommented out by deleting ‘>’ , and other lines related to Le Bail analysis should be
commented by attaching ‘>’ as the first character. Further, beware lest an intensity data file,
hoge.int, has a format incompatible with EXPO.

With RIETAN-FP, a template file, hoge.inflip, for charge flipping with superflip [179] can
also be created by setting NCF at 1 in hoge.ins. File hoge.inflip virtually includes the whole
content of hoge.ffo, i.e., diffraction indices hkl, FWHMs, and integrated intensities, |F |2, in a
block sandwiched between fbegin and endf, e.g., in the case of hybrid pattern decomposition
from X-ray powder diffraction data of BaSO4 as follows:

#----------------
# Reflection list
#----------------

dataformat fwhm intensity
#fwhmseparation 0.2
lambda 1.54059

fbegin
# h k l FWHM |Fc|^2

1 0 1 0.0706548 4.0496001
2 0 0 0.0728465 108.4026184
0 1 1 0.0731047 98.2846603
1 1 1 0.0743952 101.5643692
2 0 1 0.0748233 59.0495415
0 0 2 0.0755561 365.9663391

.....

10 2 0 0.2207206 7.5805116
endf

Note that the scale factor in hoge.ins must be adjusted in such a way that |F |2 values recorded
in hoge.inflip have sufficient numbers of significant figures.
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Figure 11.1: Observed, calculated, and difference patterns obtained by hybrid pattern
decomposition from synchrotron X-ray powder diffraction data (λ = 0.85Å) of zeolite
Na-FAU containing CuI

11.6 Examples of Hybrid Pattern Decomposition

In the case of X-ray diffraction data of barium sulfate (in folder BaSO4_LB included in
the distribution file), reliability indices resulting from Le Bail analysis with NSFF = 0 were
Rwp “ 10.56% (Re “ 10.28%), Rp = 7.29%, and RB “ 0.51%. The subsequent refinement of
integrated intensities significantly lowered Rwp to 8.12% and Rp to 5.40% at the expense of RB,
which was slightly increased to 0.70%.

Figure 11.1 shows the result of hybrid pattern decomposition for zeolite Na-FAU doped with
CuI from synchrotron X-ray powder diffraction data measured with the Debye–Scherrer geometry
on a powder diffractometer at BL15XU of SPring-8.3 Parameters related to a background
determination according to the procedure of Sonneveld and Visser [106] were NPICKUP = 20,
NREPEAT = 30, and CURVATURE = 1.0E-05, and those for refining integrated intensities after
Le Bail analysis were MREG = 6, RWID = 0.05, XMAX = 99.0, and WNEG = 1.0E+30. The
rolling background arising from diffuse scattering caused by the dopant and a glass tube of
capillary to contain the sample was successfully represented by the composite background
function (NRANGE = 3). As Fig. 11.1 shows, an excellent fit could be achieved by hybrid pattern
decomposition to give sufficiently small reliability indices: Rwp “ 1.53% (Re “ 2.52%), Rp =
1.14%, and RB “ 1.72%.

3Presented by Dr. Takuji Ikeda (AIST), who cooperated to the greatest extent possible in the development of
the routine for hybrid pattern decomposition.
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11.7 The Maximum-Entropy Patterson Method

By setting flag MEP at 1 in hoge.ins, |F phKq|2 data obtained by hybrid pattern decomposition
can be further analyzed by the maximum-entropy Patterson (MEP) method [19] with ALBA [20]
in the VENUS system. The MEP method aims at determining those voxel data of Patterson
functions, P px, y, zq, in the unit cell with a volume of V which gives the maximum information
entropy S:

P px, y, zq “
1

V

Nx
2

ÿ

h“
´Nx

2

Ny
2

ÿ

k“
´Ny

2

Nz
2

ÿ

l“ ´Nz
2

|Fophq|2 expr´2πiphx` ky ` lzqs, (11.2)

where Nx, Ny, and Nz are voxel numbers along the a, b, and c axes, respectively. Because |Fophq|2

is always non-negative real, MEP analysis requires no phase angle, i.e., ψ in Eq. (14.19). The
MEP method is, therefore, suitable for the derivation of possible models for unknown structures.

The sophisticated methodology of MEP analysis enables us to improve integrated intensities
of heavily-overlapped reflections, which may give better results when analyzing |F phKq|2 by the
direct-space and charge-flipping (dual-space) methods. The verification of the performance of
MEP analysis in ab initio structure analysis is highly desired.

An elaborate script, i.e., a batch file RIETAN.bat (Windows) or a shell script named
RIETAN.command (macOS), to run RIETAN-FP pretends as if MEP analysis were continuously
executed after hybrid pattern decomposition only by RIETAN-FP. UNIX-compatible utilities
such as grep, sed, tail, cut, and bc4 are utilized for this purpose; for example, in the case of
rietan.command:

#!/bin/bash

# Execute RIETAN-FP for macOS

function elapsed_time {

# Compare two times before and after execution of a program in seconds

if [ $(echo "$after > $before" | bc) -eq 1 ]; then

# The calculation has finished on the same day.

# Insert "0" before "." if it is absent.

echo " Elapsed time = $(echo "scale=8; $after - $before" | bc) s" | \

sed "s/ Elapsed time = \./ Elapsed time = 0./" >> temp.txt

else

# The calculation has finished on the next day.

echo " Elapsed time: $(echo "scale=8; 86400.000 - $before + $after" | bc) s" | \

sed "s/ Elapsed time = \./ Elapsed time = 0./">> temp.txt

fi

}

.....

before=$("${ALBA}seconds")

$RIETAN/rietan $sample.ins $sample.int $sample.bkg $sample.itx $sample.hkl $sample.xyz $sample.fos \

$sample.ffe $sample.fba $sample.ffi $sample.ffo $sample.vesta $sample.plt $sample.gpd $sample.alb \

$sample.prf $sample.inflip $sample.exp | tee $sample.lst

if grep -q "^ *MEP = 1$" $sample.lst ; then

# Analyze |Fo|^2 data in $sample.ffo by the maximum-entropy Patterson method to create $sample.mep

4GnuWin utilities are used for Windows: http://gnuwin32.sourceforge.net/
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${ALBA}alba $sample.alb

after=$("${ALBA}seconds")

# temp.txt: a scratch file to store parts of $sample.lst, $sample.out, and $sample.mep

sed -e '/^ *\*\*\* End of job *\*\*\*/,$d' $sample.lst > temp.txt

sed -n -e '23,/^ Number of cycles/p' $sample.out >> temp.txt

# Option -e makes \n (line feed) effective

echo -e "\n\n ************** Results of maximum-entropy Patterson analysis ***************\n\n" >> \

temp.txt

PART1=" h k l FWHM |Fc|^2 d"

PART2=" 2-theta I I/I1 Io"

echo $PART1$PART2 >> temp.txt

sed -n -e '2,$p' $sample.mep >> temp.txt

# append three line feeds, ' *** End of job ***', and two line feeds to temp.txt

tail -n 9 $sample.lst | sed -n -e '1,6p' >> temp.txt

elapsed_time

# The version number of RIETAN-FP is output

tail -n 2 $sample.lst >> temp.txt

# -f: overwrite $sample.lst

mv -f temp.txt $sample.lst

# After excution of the above command, temp.txt no longer exists in the current folder.

if grep -q "^ *NCF = 1$" $sample.lst ; then

# Replace |Fo|^2 in $sample.inflip with |Fc|^2 resulting from maximum-entropy Patterson analysis

sed -n -e '1,/^fbegin/p' $sample.inflip > temp.txt

echo "# h k l FWHM |Fc|^2" >> temp.txt

# Append columns No. 1-42 in $sample.mep to temp.txt

sed -n -e '2,$p' $sample.mep | cut -b 1-42 >> temp.txt

echo "endf" >> temp.txt

# -f: overwrite $sample.inflip

mv -f temp.txt $sample.inflip

fi

fi

.....

When MEP is set at 1 in hoge.ins, RIETAN-FP outputs ‘MEP = 1’ in hoge.lst, creating an
input file, hoge.alb, for ALBA. If a line containing ‘MEP = 1’ is found in hoge.lst, ALBA is
executed to input hoge.alb where the file name of hoge.ffo is given, e.g.,

# Name of the file, hoge.ffo, storing |Fo|^2.
BaSO4.ffo

MEP analysis with ALBA creates a file, hoge.mep, compatible with instruction REF2 (DATA
routine) in EXPO [22]. Then, other two output files, hoge.lst (RIETAN-FP) and hoge.out
(ALBA), are dealt with the UNIX-compatible commands to overwrite hoge.lst in such a way that
main parts of data in hoge.out are appended to hoge.lst. The elapsed time output at the tail
end of hoge.lst is evaluated in function elapsed_time from two variables, $before and $after,
output by a Fortran program called seconds.

If flag NEXP is set at 1 in hoge.ins, RIETAN-FP creates a template input file for EXPO,
hoge.exp, where the name of hoge.mep is placed after REF2. As described in 11.5, hoge.exp may
be appropriately modified with a text editor.

With RIETAN-FP, a template file, hoge.inflip, for charge flipping with superflip [179] can
also be created by setting flag NCF at 1 in hoge.ins. The resulting file, hoge.inflip, practically
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includes the whole content of hoge.mep at its tail end: hkl, FWHM, and |F phKq|2 values of
observed reflections (see 11.5).
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Chapter 12

INDIVIDUAL PROFILE FITTING

12.1 Local Pattern Decomposition

From Eqs. (4.24) and (2.5), we obtain

fipxq “
ÿ

K

IphKqGp∆2θiKq ` ybp2θiq. (12.1)

As described in 3.9 and 3.10, Gp∆2θiKq contains PPPs including the FWHM of the profile, HK ,
parameters associated with the degree of decay from the peak to the edge of a reflection (e.g., η
in the pseudo-Voigt function and m in the Pearson VII function), parameters related to profile
asymmetry as part of independent variables, x.

In individual profile fitting [18], PPPs, 2θK , and IphKq assigned to each reflection are refined
together with background parameters by a method of nonlinear least squares from powder-
diffraction data in a limited 2θ region. Because it is local profile fitting, a linear background
function,

ybp2θiq “ b0 ` b1p2θiq, (12.2)

containing only two background parameters is usually enough to approximate the background
intensity. Of course, the number of refinable background parameters has to be increased if the
shape of the background in the relevant 2θ region is somewhat complex because of the inclusion
of an amorphous material or the presence of a capillary tube.

As the degree of overlapping for adjacent reflections is increased, it becomes more difficult to
refine all the above parameters. Increases in correlations between refinable parameters may cause
convergence to meaningless parameters and/or divergence of the solution. Because individual
profile fitting deals with intensity data in a narrow 2θ range, no large errors result from neglecting
the dependence of PPPs on 2θ. Therefore, convergence is usually attained by imposing equality
constraints where PPPs of the same kind for overlapping reflections are constrained to be equal
to each other.

12.2 Individual Profile Fitting in RIETAN-FP

In principle, it is difficult to obtain accurate and precise 2θ’s and IphKq’s of heavily overlapped
reflections by individual profile fitting, in particular, when the resolution of the diffraction pattern
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is not very high. In RIETAN-FP, this feature is regarded as a means to supplement Rietveld
and Le Bail refinements.

With RIETAN-FP, individual profile fitting is carried out by setting NMODE at 6. Only the
split pseudo-Voigt function (3.84) or the split Pearson VII function (3.85) in p. 37 may be used
as a profile function. SPPs and lattice parameters are input as dummy data to be fixed while no
structure parameters are necessary. Reflection indices must be included in labels with a form of
‘PPPn_h.k.l,’ (see 17.3.15), and (a) PPPs (see Sect. B in “Parameters contained in the model
function in RIETAN-FP”), (b) a parameter proportional to |F phKq|, and (c) 2θK are refined by
a least-squares method. That is, reflections whose parameters are refined are regarded as relaxed
ones. Refer to Tables S-2, S-3, and S-4 for PPPs and other parameters to be input in individual
profile fitting.

Figure 12.1 shows individual profile fitting of an X-ray powder-diffraction pattern for
α-quartz (Cu Kα). FWHM(Lorentz), FWHM(Gauss), A, ηL, ηH, constˆ|Fc|, and 2θK of each
reflection were refined by setting NPRFN at 2 (a modified split pseudo-Voigt function for relaxed
reflections). In this pattern in a 2θ range of 66˝ ´ 70˝, 122, 023, and 301 reflections for Kα1

and Kα2 radiations are observed; decomposed reflections are shown by broken lines. Diffraction
indices are attached to only Kα1 reflections. In this analysis, PPPs, |F phKq|’s, and 2θK ’s of the
122, 023, and 301 reflections were refined as listed below:
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Figure 12.1: Decomposition of an X-ray powder-diffraction pattern of
quartz by individual profile fitting
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No. A ID
.....
PPP1_1.2.2: 21 0.103913 1 FWHM(Lorentz) for phase 1: 1 2 2

22 0.132359 1 FWHM(Gauss)
23 1.55846 1 A
24 0.556588 1 eta_L
25 0.498263 1 eta_H
26 535.051 1 const*|Fc|
27 67.6924 1 2-theta(peak)

.....

PPP1_0.2.3: 49 0.119797 1 FWHM(Lorentz) for phase 1: 0 2 3
50 0.115534 1 FWHM(Gauss)
51 1.23611 1 A
52 0.911778 1 eta_L
53 0.472013 1 eta_H
54 604.212 1 const*|Fc|
55 68.0863 1 2-theta(peak)

.....
PPP1_3.0.1: 63 0.223776 1 FWHM(Lorentz) for phase 1: 3 0 1

64 0.111171 1 FWHM(Gauss)
65 0.959217 1 A
66 0.535918 1 eta_L
67 0.428859 1 eta_H
68 502.977 1 const*|Fc|
69 68.2500 1 2-theta(peak)

.....
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Chapter 13

DETERMINATION OF
CRYSTALLITE SIZES AND
MICROSTRAINS

Microstructural evaluation is important to understand physical and chemical properties of
polycrystalline materials, particularly in the field of nanotechnology. This chapter deals with
microstructural characterization using RIETAN-FP, helping its users to learn details in procedures
to determine crystallite sizes and microstrains after whole-pattern fitting of powder diffraction
data measured over a wide range of 2θ by the Rietveld or Le Bail method. These features provide
us with powerful and convenient means to investigate microstructures from isotropic profile
broadening by X-ray and neutron powder diffraction.

Crystallite-size broadening can be used to determine the crystallite size of less than 1 µm
in materials. On the other hand, microstrains are caused by a distribution of both tensile and
compressive forces, which causes broadening of diffraction profiles about the original position.
Crystallite-size broadening follows a 1{ cos θ function whereas strain-induced profile broadening
has a tan θ dependence [183], which allows us to separate these two effects in diffraction data over
a wide 2θ range. In what follows, three different methods of microstructural analysis from powder
diffraction data will be described.1 For convenience, subscript K representing the reflection
number is omitted, with some equations in Chap. 3, repeated in this chapter.

13.1 Determination of Crystallite Sizes and Microstrains from
Profile Parameters

With RIETAN-FP, crystallite sizes and microstrains can be estimated in the same manner as
GSAS [185]. That is, profile parameters in the pseudo-Voigt function of Thompson, Cox, and
Hastings [96] are refined by the Rietveld or Le Bail method from powder diffraction data of an
instrumental standard and an analysis sample to determine crystallite sizes and microstrains in
the latter.

In the pseudo-Voigt function of Thompson et al. [96] (see 3.9.3), the full-width at half
1This chapter is a minor revision in [184].
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maximum (FWHM), HG, for the Gaussian component is represented by

HG “
“

8 ln 2
`

U tan2 θ ` V tan θ `W
˘‰

1
2 . (13.1)

On the other hand, the FWHM of the Lorentzian one, HL, is computed by

HL “
X

cos θ
` Y tan θ, (13.2)

where θ is the Bragg angle, and U , V , W , X, and Y are profile parameters to be refined by a
method of nonlinear least squares. Equations (13.1) and (13.2) are abbreviated forms of Eq.
(3.70) and Eq. (3.71), respectively. In both GSAS and RIETAN-FP, the unit of U , V , and W in
Eq. (13.1) is (degrees)2 whereas that of X and Y in Eq. (13.2) is degrees.

Let K be the shape factor (dimensionless), λ the wavelength of the X-ray or neutron beam, r
a constant (= π/180 = 0.0174533) to convert degrees into radians. Then, the crystallite size, D,
is determined from

D “
Kλ

rX
(13.3)

with the unit of D being equal to that of λ. K depends on assumptions made during the deriva-
tions. Microstrains corresponding to the Gaussian and Lorentzian components are, respectively,
computed by

εG “ r
“

8 ln 2 pU ´ Uiq
‰
1
2 , (13.4)

εL “ r pY ´ Yiq , (13.5)

where Ui and Yi are contributions of the instrument to U and Y , respectively. Ui and Yi can
be estimated by Rietveld analysis from diffraction data of a sample whose crystallinity is high
enough to show negligible profile broadening due to the sample.

There is a direct relationship between the parameters and a physical model in the Larson–Von
Dreele formulation, which is therefore appealing in terms of its soundness based on physics
motivation. The pseudo-Voigt function of Thompson et al. is, accordingly, preferred to the
Pearson VII function (3.63) to obtain information on D and ε. This simple method, however,
suffers from possible errors due to strong correlations among profile parameters, U , V , W , X, and
Y . The presence of the two kinds of the microstrains, εG and εL, complicates the understanding
of the nature of isotropic microstrain. In addition, no dependence of profile broadening on a
function containing θ is graphically illustrated, which is unfavorable for finding variations in the
data and anisotropic broadening of diffraction profiles.

To overcome such drawbacks of the methodology adopted in GSAS [185], the Williamson–
Hall [186] and Halder–Wagner [187, 188] methods were added to RIETAN-FP. With these
two methods, D and ε can easily be determined from integral breadths, β, defined as (peak
area)/(peak intensity) after Rietveld or Le Bail analysis. Powder diffraction data measured with
characteristic X-rays such as Cu Kα radiation are good enough to get reliable D and ε values.
Because the graphing of the two kinds of plots with free software, gnuplot2 [63] (see 17.7.1),
is supported in RIETAN-FP, additional information is obtainable on the characterization of
polycrystalline materials by use of profile broadening, for example, anisotropic one depending on
directions of scattering vectors.

2http://gnuplot.sourceforge.net/
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13.2 Williamson–Hall method

Crystallites whose size, D, is less than ca. 1 µm exhibit profile broadening. The integral breadth
(in radians), β, due to the effect of small crystallites is related to D via the so-called Scherrer
equation [189],

βD “
Kλ

D cos θ
, (13.6)

corresponding to Eq. (13.3).
The effect of isotropic microstrain, ε, on profile broadening can be derived by differentiating

Bragg’s law,
λ “ 2d sin θ, (13.7)

with respect to θ:
∆θ “ ´

∆d

d
tan θ “ ´ε tan θ. (13.8)

That is, profile broadening due to microstrain, ε “ ∆d{d, is proportional to tan θ. Stokes and
Wilson [190] pointed out that the integral breadth, βε, arising from isotropic microstrain is
related to the integral breadth of the strain distribution, ξ, by

βε “ 2ξ tan θ. (13.9)

Comparison between Eq. (13.6) and Eq. (13.9) shows that the dependence of βD on θ is quite
different from that of βε. Williamson and Hall [186] introduced a simple approximation that the
integral breadth, β, due to both of small crystallite sizes and microstrains is simply the sum of
Lorentzian component, βD, and the Gaussian one, βε:

β “ βD ` βε. (13.10)

Thus, Eq. (13.6) and Eq. (13.9) are combined together to yield

β “ Cε tan θ `
Kλ

D cos θ
(13.11)

with
ε “ Cξ. (13.12)

The proportional constant, C, which depends on the assumptions made concerning the nature
of the inhomogeneous strain, lies between 4 and 5, with C “ 4 corresponding to the maximum
(upper limit) of strain [191, 192]. In part of previous work, C was carelessly set at 2, which
probably arose out of confusing ξ with ε. Multiplying both sides of Eq. (13.11) by cos θ, we
obtain

β cos θ “ Cε sin θ `
Kλ

D
. (13.13)

Equation (13.13) is regarded as a straight line, y “ Px`Q. The slope of the straight line is
P “ Cε while its y intercept is Q “ Kλ{D. A plot of y “ β cos θ against x “ sin θ is referred to
as the Williamson–Hall (WH) plot since Williamson and Hall [186] proposed this methodology
in 1953. However, this designation is somewhat unfair in view of the fact Hall was the first to
report this methodology in 1949 [193]. Equation (13.13) holds true for isotropic line broadening.
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If both of crystallite-size and microstrain profiles are Gaussian, then the plot is convex
downward, having the same terminal slope at a high angle as the Lorentzian case and intercepting
the y axis at Kλ{D [194].

The WH plot is a very useful diagnostic tool for learning the kind(s) of profile broadening
and determining approximate values of D and ε.

Regrettably, various K values such as 0.89, 0.9, 0.94, and 1.0 have been arbitrarily used
in the literature without any regard to the definition of the crystallite size or the selection of
FWHM or β as a measure of line broadening. Ida et al. [195] derived the K value of 4/3 for the
mean volume-weighted average size, xDyV , defined as the ratio of the mean forth power of D
divided by the mean cube of D,

xDyV “
xDy4

xDy3
, (13.14)

in the case of spherical crystallites. Note that the K value of 4/3 is valid on the representation
of profile broadening not by the FWHM but by the integral breadth, β, in the same way as Eq.
(13.13).

13.3 Halder–Wagner method

For the determination of D and ε, Halder and Wagner [187,188] proposed an alternative equation
containing the integral breadth, β˚, of the reciprocal lattice point and the lattice-plane spacing,
d˚, for the reciprocal cell:

ˆ

β˚

d˚

˙2

“
K

D
¨
β˚

pd˚q
2 ` p2εq2 (13.15)

with
β˚ “

β cos θ

λ
, (13.16)

d˚ “
2 sin θ

λ
(13.17)

on the assumptions that the Lorentzian and Gaussian components of β˚ are solely due to the
size and strain effects, respectively. Equation (13.15) can be rewritten as

ˆ

β

tan θ

˙2

“
Kλ

D
¨

β

tan θ sin θ
` 16ε2 (13.18)

on the basis of direct space. Inside RIETAN-FP, another equation,
ˆ

β cos θ

sin θ

˙2

“
Kλ

D
¨
β cos θ

sin2 θ
` 16ε2, (13.19)

equivalent to Eq. (13.18) is adopted because both of Eq. (13.13) and Eq. (13.19) contain sin θ

and β cos θ.
Equation (13.18) has a form of a straight line, y “ Px ` Q, in a similar manner as Eq.

(13.13). In the Halder–Wagner (HW) plot, y “ pβ{ tan θq
2 is plotted against x “ β{ ptan θ sin θq.

Then, the slope and y intercept of the resulting straight line afford P “ Kλ{D and Q “ 16ε2,
respectively. As described in the previous section, the value of K = 4/3 [195] is believed to be
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valid on the definition of the crystallite size as the volume-weighted average one for spherical
crystallites.

Despite the approximations and assumptions made on the derivation of Eq. (13.18), the HW
formulation has a great advantage that data for reflections at low and intermediates angles are
given more weight than those at higher diffraction angles, which are often less reliable. Further,
Eq. (13.18) does not contain the constant C unlike Eq. (13.13), which is another advantage of
the HW formulation over the WH one.

13.4 Calculation of Crystallite Sizes and Microstrains

13.4.1 An instrumental standard

After Rietveld or Le Bail analysis with a pair of files, hoge.ins and hoge.int, has been finished,
sin θ and βpinstrq cos θ, where βpinstrq denotes the integral breadth due to the instrument, are
estimated for all the reflections observed in the whole diffraction pattern and output to the
gnuplot data file, hoge.gpd. Profile broadening arising from the instrument includes spectral
distribution of X-ray and neutron beams, deviations from the ideal geometry, axial divergence,
sample transparency, etc. In all the profile functions, Gp∆2θq, used in RIETAN-FP, the peak
area of each reflection is normalized in such a way that

ż `8

´8

Gp∆2θqdp2θq “ 1 (13.20)

Therefore, β is simply equal to the reciprocal of the peak intensity.
Equations (13.13) and (13.18) are calculated from sin θ and βpinstrq cos θ, which is followed

by linear regression analysis to obtain D and ε from the slope and y intercept. The D and ε
values output to hoge.lst are expected to give an approximately straight line, which can easily be
checked by drawing a graph by gnuplot [63] with a pair of files, hoge.gpd and hoge.plt, created
by RIETAN-FP (see 13.4.3).

An instrumental standard having the same crystal structure and chemical composition is
preferred, of course. Unless such a sample of high crystallinity is available, a standard reference
material such as NIST SRM 640 (Si) and SRM 660 (LaB6) with a similar linear attenuation
coefficient, µ, may be used as a substitute. Such a caution is demanded particularly when a
sample of a small µ value is mounted on a flat-plate holder in an X-ray powder diffractometer
with the Bragg–Brentano geometry where the effect of sample transparency is appreciable.

13.4.2 A sample showing broadened diffraction profiles

The hoge.gpd file for the instrument standard sample is renamed instrument.gpd and copied
into a folder where a series of files, e.g., hoge.ins and hoge.int, for an analysis sample are
contained. If needed, one or more lines storing hkl, sin θ, β cos θ, etc. for another instrument
standard may be inserted into instrument.gpd to complement reflection data in a low-angle region.
Then, Rietveld or Le Bail analysis is carried out to obtain sin θ and βpobsq cos θ. The sin θ and
βpinstrq cos θ values are input from instrument.gpd and interpolated by spline interpolation to
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give βpinstrq cos θ corresponding to the present sample. Such a procedure is very convenient,
requiring only instrument.gpd.

Strictly speaking, the observed profile is the convolution of profiles due to the instrument and
the sample. To evaluate the approximate contribution of the broadening, β(sample), originating
in the sample, the following approximation formula is used:

rβpsampleqs
n

“ rβpobsqs
n

´ rβpinstrqs
n . (13.21)

The power, n, is input by the user in hoge.ins. In happy and special situations, n is 1 for
Lorentzian instrumental and sample broadening and 2 for Gaussian instrumental and sample
broadening [194]. In the case of the intermediate character (Voigtian instrumental and sample
broadening), n is expected to lie between 1 and 2. Equations (13.13) and (13.18) are then
calculated from a set of sin θ and βpsampleq cos θ pairs, which is followed by linear regression
analysis to yield D and ε. Of course, graphing of the plot with gnuplot (see 13.4.3) is also
possible in this case because both sin θ and βpsampleq cos θ for all the reflections in the whole 2θ

range are output to hoge.gpd together with the corresponding script file, hoge.plt, for gnuplot.
Deviations from the linear relationships, i.e., Eq. (13.13) and Eq. (13.18), because of anisotropic
profile broadening can easily be recognized by the resulting graph.

13.4.3 Graphical representation of a Williamson–Hall or Halder–Wagner plot

Commands to draw a WH or HW plot are output as comment lines following

## Determination of crystallite size and microstrain

in the gnuplot script file, hoge.plt, where both β cos θ (WH method) and pβ{ tan θq
2 (HW method)

are multiplied by 1000 to shorten numerical values on the y axis. These commands are extracted
and executed by gnuplot to obtain a PDF file, hoge-mscs.pdf, of a graph with an MSCS macro
included in the integrated assistance environments for RIETAN–VENUS. The resulting PDF file
is usually browsed with Sumatra PDF3 for Windows or Preview for macOS.

Of course, part of the comment lines (e.g., document sizes, line widths, font and circle sizes)
to draw the WH or HW plot may be freely modified by the user to improve the appearance of
the graph. A script file, hoge-mscs.plt, which was converted from hoge.plt by a stream editor
named sed, is left in the current folder for reference. This file may be input to be edited by a
GUI front-end application to change various settings.

For details in MSCS, see Readme_macros.pdf and Readme_scpt.pdf.

13.4.4 Determination of a crystallite size with diffraction data of cerium
dioxide

The features of the WH and HW methods in RIETAN- FP were tested with two sets of X-ray
powder diffraction data for CeO2: a broadened sample and an instrumental standard used in the
first size/strain round robin [192]. These two intensity data (a “common” instrumental setup
with Cu Kα radiation) were downloaded from a Web page of the round robin.4

3http://blog.kowalczyk.info/software/sumatrapdf/free-pdf-reader.html
4http://www.ccp14.ac.uk/ccp/web-mirrors/balzar/div853/balzar/s-s_rr.htm
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Nanocrystalline CeO2 exhibiting profile broadening due to the crystallite-size effect was
produced by the thermal treatment of hydrated ceria at 923K for 45 h [196]. Substantial
microstrain is expected to be absent in this sample. The instrumental standard was prepared by
annealing commercially available CeO2 at 1573K for 3 h in air.

With RIETAN-FP, the two intensity data were analyzed by the Rietveld method to determine
the crystallite size and microstrain of the annealed sample of CeO2 according to the procedures
described in 13.4.2. The n value in Eq. (13.21) was set at 2.

Figure 13.1 illustrates the HW plot drawn from the two sets of the Rietveld refinement.
A distinct linear relationship is found between pβ{ tan θq

2 and β{ ptan θ sin θq. The y intercept
is as small as 9.443ˆ10´6, corresponding to a very small microstrain of 0.07682% in this
sample annealed at the high temperature. The WH plot also showed that β cos θ bears a linear
relationship to sin θ. The upper limit of ε was estimated at 0.4957% from the slope of the
resultant straight line with C “ 4. This strain value is comparable to the average one, 0.4(9)%,
in the round robin [192]. The crystallite sizes determined by the WH and HW methods were
22.47K nm and 21.69K nm, respectively. K depends on the definition of the crystallite size. If
the K value of 4/3 for the mean volume-weighted size of spherical crystallites [195] is adopted,
xDyV is calculated at 29.96 nm in the WH method and 28.92 nm in the HW one. These two
values slightly less than 30 nm fall within ranges of xDyV , (32 ˘ 11) nm, reported by Balzar et
al. [192] and are comparable to xDyV determined by a fundamental-parameter approach [197]
(see Fig. 4 in Ref. [192]).
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Figure 13.1: A Halder–Wagner plot for the round-robin sample of nanocrystalline CeO2.
The straight line was obtained by linear regression analysis.
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13.4.5 Summary

The WH and HW plots are the most rapid diagnostic tools for determining the kinds(s) of
profile broadening present in samples analyzed by the Rietveld or Le Bail method [194]. Both of
them present the following valuable information about microstructures of various polycrystalline
materials:

(a) Clear discrimination between crystallite-size and microstrain effects,

(b) An estimate of the crystallite size, D,

(c) An estimate of the microstrain, ε,

(d) Clear distinction between isotropic (monotonic curve) and anisotropic (scatter) broadening
by graphical representation with gnuplot.

For example, (b) and (c) are useful to characterize nano-crystalline materials showing marked
surface effects while (c) helps us to estimate the degree of inhomogeneous distribution of solute
atoms in solid solutions. With only numerical data, anisotropic broadening cannot be well
perceived contrary to (d). We are confident that the WH and HW methods of microstructural
characterization in RIETAN-FP deliver added value to its users in both academic institutions
and industries.
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Chapter 14

WHOLE-PATTERN FITTING
BASED ON THE
MAXIMUM-ENTROPY METHOD

14.1 Introduction

The maximum-entropy method (MEM) is a versatile approach to estimation of a model from a
limited amount of information by maximizing information entropy under constraints consistent
with observed physical quantities. Sakata et al. [198,199] have been applying MEM to determi-
nation of electron and nuclear (strictly speaking, coherent-scattering length bc) densities from
powder-diffraction data. Diffraction intensities scattered in the reciprocal space are converted
into electron/nuclear densities filling the real space; that is, the densities are visualized in three
dimensions. MEM can estimate structure factors of reflections in the high-Q region excluded in
the analysis of the powder-diffraction data, which is favorable for improving the S/N ratio in the
3D densities.

When dealing with compounds exhibiting heavily overlapping reflections, integrated intensities
are often estimated on the basis of the result of Rietveld analysis. In this procedure, the observed
intensity at each point is apportioned in the ratio of profiles calculated from final parameters and
summed up for each reflection. The resultant ‘observed’ structure factors are then analyzed by
MEM to give 3D electron/nuclear densities in the unit cell. Unfortunately, ‘observed’ structure
factors evaluated in this way are doubly biased towards the structural model because both phases
and calculated integrated intensities used for the intensity partitioning are taken from the model.

We have been claiming that the above undesirable effect, which is overlooked or disregarded
by Sakata et al., should be overcome if only partially. Even if the structural model in the Rietveld
analysis from X-ray powder-diffraction data is essentially correct, chemical bonding is hardly
represented with structure parameters such as fractional coordinates and atomic displacement
parameters. This is the main reason for the necessity of difference Fourier synthesis in studies of
electron densities by single-crystal X-ray diffraction. Refinement of isotropic atomic displacement
parameters, U , in Rietveld analysis (anisotropic atomic displacement parameters, Uij , cannot
practically be refined from X-ray powder-diffraction data) and that of a scale factor on the basis
of the inadequate structural model will lower the accuracy of the ‘observed’ structure factors.
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In this chapter, we will describe our original technology named MEM-based pattern fitting
(MPF) [11–17].1 We have integrated a multipurpose pattern-fitting program RIETAN-FP, a
MEM analysis program Dysnomia [17,23], and a 3D visualization program VESTA [1,25,26,138]
to construct a system to refine crystal structures by MPF from powder-diffraction data. With
this MPF system, the bias imposed on final electron/nuclear densities can efficiently be reduced
by running RIETAN-FP and Dysnomia alternately.

14.2 Background

In single-crystal X-ray analysis, we often carry out difference Fourier synthesis, i.e., the inverse
Fourier transform of differences, between observed structure factors, FophKq, and structure
factors, F phKq, calculated from structure parameters:

∆F phKq “ FophKq ´ F phKq. (14.1)

Difference Fourier synthesis is suitable for detecting subtle differences between real and modeled
structures.

Two serious problems hinder the satisfactory application of difference Fourier synthesis to
powder-diffraction data. One is the appearance of ‘ripples’ due to the termination effect even
in difference Fourier synthesis where Fourier coefficients with higher orders are regarded as
negligible. This effect makes it difficult to extract physically meaningful residual distribution
from D-synthesis maps. The other is difficulty in obtaining accurate observed structure factors,
|FophKq|, owing to the collapse of the 3D reciprocal space onto the one-dimensional diffraction
pattern.

In MEM analysis, no model function is fit to the observed pattern unlike Rietveld analysis
using least-squares methods; that is, we estimate density distribution whose information entropy
is maximized within errors in observed diffraction data. Structural information contained in
diffraction data is accordingly extracted by MEM and reflected on the 3D densities provided
that the diffraction data have been measured in an appropriate way. Electron densities are
calculated from FophKq’s in Fourier synthesis. On the other hand, in MEM, we solve a kind
of an inverse problem where electron densities are determined prior to calculation of structure
factors, F (MEM). The termination effect is, consequently, far less marked in MEM analysis
than in Fourier synthesis. Further, the MEM can estimate structure factors of reflections in the
high-Q region excluded in the analysis of intensity data, as described earlier. MEM analysis,
therefore, gives less noisy 3D densities than Fourier synthesis from a limited number of observed
reflections.

The distribution of bc is also determinable by MEM analysis from neutron diffraction data.
The term “nuclear density” may be substituted for “electron density” in subsequent general
descriptions common to X-ray and neutron diffraction.

1The review article [12] is obtainable at http://www.fkf.mpg.de/4112052/cpd26.pdf
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14.3 Maximum-Entropy Equation

The general principle of MEM analysis is to find the maximum of the information entropy, S,
under several constraints. There are a few variations of the MEM formalism. In what follows, we
will follow Collins’s formalism [200] based on Jaynes’s expression of the information entropy [201].

In MEM analysis of X-ray/neutron diffraction data, electron/nuclear densities are represented
with those in voxels (parallelepipeds) whose numbers along a, b, and c axes are Na, Nb, and
Nc, respectively. Let Np (= NaNbNc) be the total number of voxels in the unit cell, ρj the
normalized density at the position rj in the 3D gridded space, ρ˚

j the density at rj , and τj the
normalized density at rj derived from prior information, then S is formulated as

S “ ´

Np
ÿ

j“1

ρj ln

ˆ

ρj
τj

˙

(14.2)

with
ρj “

ρ˚
j

N
ÿ

j“1

ρ˚
j

. (14.3)

S is maximized under the following three constraints:

ρj ą 0, (14.4)

1

MF

MF
ÿ

K“1

«

ˇ

ˇF phKq ´ FophKq
ˇ

ˇ

σ p|FophKq|q

ff2

“ 1, (14.5)

Np
ÿ

j“1

ρj “ 1, (14.6)

whereMF is the total number of reflections with known phases, F phKq is the calculated structure
factor for reflection hK , FophKq is the observed structure factor, and σ p|FophKq|q is the standard
uncertainty (s.d.) of |FophKq|. Densities, ρj (j “ 1, 2, 3, ¨ ¨ ¨ , N), that maximize S are refined
iteratively by the use of Lagrange undetermined multipliers.

The inequality constraint (14.4) prevents electron densities in part of voxels from falling
into negative values. For random errors, the experimental values, Fo’s and σK ’s, impose the
F -constraint (14.5) of a χ2 statistics type on S. That is, MEM derives densities giving F phKq’s
that agree with FophKq’s within their errors. The normalization constraint (14.6) holds the
total number of electrons in the unit cell, F p000q (X-ray diffraction), or the sum of bc’s (neutron
diffraction) constant. Thus, the physical quantities, FophKq’s, in reciprocal space are converted
into densities in real space.

14.4 Calculation of Structure Factors from Densities

14.4.1 X-Ray diffraction

When dealing with X-ray diffraction data of a compound where ne is the total number of electrons
in the unit cell, F phKq is calculated by the Fourier transform of electron densities in the unit
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cell:

F phKq “ ne

Np
ÿ

j“1

ρj exp p2πihK ¨ rjq . (14.7)

Note that we can obtain not |F phKq| but F phKq. Calculation of F phKq with this equation
corresponds to the determination electron-density distribution in conformity with space-group
symmetry while keeping ne constant. For users’ convenience, ne is output near the last part of
hoge.lst.

14.4.2 How to deal with elements of negative coherent-scattering lengths

MEM is simply applicable to the analysis of Fo data for compounds containing elements with
negative bc values, e.g., H, Li, Ti, and Mn [24]. In such cases, S is represented as the sum of
those for positive and negative densities [202]:

S “ S` ` S´. (14.8)

This is a good approximation to S because of the negligible overlap of nuclear densities for two
atoms. Thus, Eq. (14.7) is rewritten as

F phKq “

Np
ÿ

j“1

´

ρ`
j ` ρ´

j

¯

exp p2πihK ¨ rjq (14.9)

with
ρ`
j “ T`ρj , (14.10)

ρ´
j “ T´ρj . (14.11)

In Eqs. (14.10) and (14.11), ρj is the nuclear density normalized with Eq. (14.6); T` and T´

are the total numbers of positive and negative bc’s, respectively. After the number of atoms in
the unit cell has been multiplied by bc for each element contained in a compound, the resulting
positive and negative values are separately summed up to yield T` and T´, respectively. T`

and T´ are output near the last part of hoge.lst for users’ convenience.
In the case a site occupied by two or more elements, it should be regarded as being occupied

by a virtual chemical species with an average coherent-scattering length calculated from the
occupancies of the elements. The resulting value of bc should be multiplied by the number of the
virtual species in the unit cell to be added to T` or T´.

14.4.3 Reliability indices

In MEM analysis, two reliability indices are calculated to judge agreements between observed
and calculated structure factors:

R “

ÿ

K

ˇ

ˇFophKq ´ F phKq
ˇ

ˇ

ÿ

K

ˇ

ˇFophKq
ˇ

ˇ

, (14.12)
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Rw “
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’
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’

’

’
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%

ÿ

K

«

ˇ

ˇFophKq ´ F phKq
ˇ

ˇ

σ
`

|FophKq|
˘

ff2

ÿ

K

«

ˇ

ˇFophKq
ˇ

ˇ

σ
`
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˘

ff2
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-

1
2

. (14.13)

R corresponds to RF in Rietveld analysis whereas Rw uses the weighted sum of squares for a
measure of agreement.

14.5 Standard Uncertainties of Observed Structure Factors

Strictly speaking, we should state “standard uncertainties of the absolute values of observed
structure factors”, |FophKq|, instead of “standard uncertainties of observed structure factor.”
From Eq. (4.24), we can derive

|FophKq| “

„

IophKq

smKPKLpθKq


1
2

(14.14)

and its standard uncertainty,

σ
`

|FophKq|
˘

“
|FophKq|

2

$

&

%

«

σ
`

IophKq
˘

IophKq

ff2

`

„

σpsq

s

2
,

.

-

1
2

, (14.15)

where σ
`

IophKq
˘

and σpsq are the standard uncertainties of IophKq and s, respectively. For
simplicity, let us suppose an isolated reflection, whose observed integrated intensity can be
obtained by numerical integration with Eq. (4.29). On the basis of the law of propagation of
errors [203] in combination with counting statistics, we obtain

”

σ
`

IophKq
˘

ı2
“ p∆2θq2

ÿ

i

σ2pyiBq

“ p∆2θq2
ÿ

i

yiB

“ ∆2θIophKq.

(14.16)

Thus, Eq. (14.15) is rewritten as

σ
`

|FophKq|
˘

“
|FophKq|

2

#

∆2θ

IophKq
`

„

σpsq

s

2
+

1
2

. (14.17)

In actual MEM analysis from powder-diffraction data, Eq. (14.17) is modified as

σ
`

|FophKq|
˘

“
|FophKq|

2

#

1

EIophKq
`

„

σpsq

s

2
+

1
2

, (14.18)

regardless of the degree of overlapping of reflections. E is a factor to adjust σ
`

|FophKq|
˘

’s
properly.

E is inversely proportional to ∆2θ, depending on ∆2θ primarily. An estimated value of E,
E(SCIO), which is roughly equal to the reciprocal of average ∆2θ, is given for each phase in

118



CHAPTER 14. WHOLE-PATTERN FITTING BASED ON THE MAXIMUM-ENTROPY METHOD

the standard output, hoge.lst (see 17.8.6). In general, E should be decreased on the analysis of
diffraction data of poor statistics. E is usually determined so as to give reasonable σ

`

|FophKq|
˘

values and a relatively small number of cycles in a series of MEM analyses where 0th-order
single-pixel approximation is used with a fixed and small λ0. Smaller Rwp values resulting from
MPF are also desirable because they reflect the improvement of F phKq’s by MEM.

In addition, E must be adjusted in such a way that the resulting density distribution is
physically and chemically reasonable. In our experience, optimum values of E lie between
3000 rad´1 and 4000 rad´1 for CuKα radiation and between 8000 rad´1 and 10000 rad´1 for
synchrotron X rays. Sometimes, comparison of electron-density distributions determined by
MPF and electronic-state calculations with Gaussian,2 GAMESS,3 WIEN2k,4 VASP,5 ABINIT,6

DVSCAT,7 etc. is useful for this purpose.
Nuclear densities are concentrated in a relatively few number of voxels near atomic nuclei

except for compounds containing highly disordered atomic species. Therefore, the convergence of
MEM analysis from neutron diffraction data requires fairly large σ

`

|FophKq|
˘

data, which can
be obtained by setting E between 200 rad´1 and 500 rad´1.

Such an arbitrary property of σ
`

|FophKq|
˘

may cause deviation of final electron- or nuclear-
density distribution from true one. This problem is believed to be partially overcome by MPF
where fitting of the calculated pattern to the observed one is repeated during REMEDY cycles
(see 14.7.2).

14.6 MEM/Rietveld Method

In recent years, Takata et al. [204] have applied it actively to the determination of 3D elec-
tron/nuclear densities from X-ray/neutron powder-diffraction data. MEM infers the 3D densities
in such a way that they give the maximum variance of structure factors, F phKq ” F (MEM),
within errors in observed structure factors, FophKq. Structural information can effectively be
extracted from the diffraction data and reflected on the resulting 3D densities by MEM if the
data have been appropriately measured. Because MEM can estimate nonzero structure factors
for high-Q reflections excluded in the analysis of the powder diffraction data, the termination
effect is less marked in MEM analysis than in Fourier synthesis. Thanks to these advantages,
MEM provides us with less noisy 3D densities than Fourier synthesis.

Takata et al. have estimated ‘observed’ structure factors, FophKq ” Fo(Rietveld), on the
basis of the result of Rietveld analysis when dealing with overlapping reflections. That is, the
observed net intensity at each point is apportioned in the ratio of profiles calculated from final
structure and profile parameters and summed up for each reflection according to the procedure
proposed by Rietveld [10].This expedient technique is also utilized to evaluate RB and RF in
Rietveld analysis (see 4.3.2), integrated intensities in the Le Bail method, and 3D densities by

2http://www.gaussian.com/
3http://www.msg.ameslab.gov/GAMESS/GAMESS.html
4http://www.wien2k.at/
5http://cms.mpi.univie.ac.at/vasp/
6http://www.abinit.org/
7http://www.dvxa.org/
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Powder diffraction data Initial structural model 

Rietveld analysis       
     RIETAN-FP

MEM analysis
Dysnomia

Whole-pattern fitting  
        RIETAN-FP

Electron/nuclear
     densities

   Visualization of 
density distribution

       Revised 
structural model 

F  (Rietveld)o

F   c (MEM)

F  o (w.p.f.) REMEDY
cycles

VESTA

Figure 14.1: Structure refinement by MEM/Rietveld analyses followed by
iterative MEM-based pattern fitting; ‘Rietveld’, ‘MEM’, and ‘w.p.f.’, each in a
pair of parentheses, denote analyses by which structure factors are derived

Fourier synthesis. After close checking of the resulting 3D densities, the structural model in
Rietveld analysis is modified, if necessary. Rietveld and MEM analyses are alternately repeated
until a reasonable structural model is reached, as shown in the upper box in Fig. 14.1. Such an
iterative technique is referred to as the MEM/Rietveld method [204].

However, the Fo(Rietveld) data estimated from the refinable parameters are where F phKq

is the structure factor calculated from structure parameters refined by the Rietveld method.
doubly biased toward a structural model in the Rietveld analysis because both phase angles, ψ,
and calculated profiles used for the intensity partitioning are derived from the model. That is,
FophKq is approximated as

FophKq “ |FophKq| exppiψq (14.19)
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with

exppiψq “ cosψ ` i sinψ

“
F phKq

|F phKq|
,

(14.20)

The bias for ψ is relatively small in centrosymmetric space groups because ψ is 0 or π. This
approximate nature of the procedure for extracting integrated intensities lowers the accuracy of
3D densities determined by MEM analysis of Fo(Rietveld)’s. The undesirable bias in favor of the
structural model enlarges with increasing degree of overlap of reflections and lowering resolution
in a powder pattern.

Nevertheless, the MEM analysis ogf Fo(Rietveld)’s is certainly effective in modifying imperfect
structural models for Rietveld analysis, as verified by location of (a) a pair of H atoms in the
paraelectric phase of KH2PO4 at room temperature [205], (b) residual water in β cages of a
dehydrated zeolite Na-LTA [206], (c) (CH3)4N` and Na` ions, in a helix layered silicate [207],
and (d) Na` and H3O` ions, and H2O molecules between two CoO2 layers in a superconducting
sodium cobalt dioxide hydrate [208].

Figure 14.2 illustrates that electron-density distribution on the (110) plane in Na-LTA
which was determined by (a) Fourier synthesis and (b) MEM analysis [206]. In this figure, the
range of electron densities is 0.1–5/Å3, the step is 0.1/Å3, and the vertical axis is parallel to
the [001] direction. Both results were obtained by Rietveld analysis followed by Fourier and
MEM analyses with the same number of Fo(Rietveld) data. The termination effect makes it
nearly impossible to distinguish between residual water molecules and ripples in (a). By contrast,
residual water can be clearly seen in (b) at four positions indicated by arrows inside the β
cage despite an occupancy as low as 0.028. Though this simple method is far from perfect for
determining accurate 3D densities, MEM allows us to extract a maximum amount of structural
details from the Fo(Rietveld) data containing contributions neglected in the structural model. In
addition, Fo(Rietveld) data can be evaluated with a fair degree of accuracy for (nearly) isolated
reflections. Structural information contained in these reflections serves to improve the accuracy
of F (MEM)’s estimated by MEM for the overlapping reflections.

(a) (b)
Figure 14.2: Electron-density distribution on the (110) section determined for Na-
LTA by (a) Fourier synthesis and (b) MEM analysis
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14.7 MEM-Based Pattern Fitting

To overcome the serious flaws in the oversimple procedure of Takata et al., we devised a
state-of-the-art technique of structure refinement called MPF.

14.7.1 Software for MPF

Prior to a detailed description of MPF, the three dimensional visualization system VENUS8 will
be introduced shortly [209,210].9.

VENUS, which has been developed by Dilanian, Izumi, Momma, and Kawamura since 2001,
currently comprises the following five programs:

1. VESTA (Visualization for Electronic and STructural Analysis) for 3D visualization of
crystal structures and volumetric data [1, 25,26,138],

2. Dysnomia [17, 23], which is the successor to PRIMA [13], for MEM analysis from X-ray
and neutron diffraction data,

3. ALBA [20, 21] (After Le Bail Analysis) for the maximum-entropy Patterson method
proposed by David [19,20],

4. Alchemy [211]: a file converter to make it possible to analyze observed structure factors,
which result from Rietveld analysis using GSAS [87] and FullProf [110], by MEM with
Dysnomia.

VESTA

To overcome some faults in VICS and VEND [209,210,212], we at first upgraded VICS to VICS-II
employing a modern C++ GUI framework wxWidgets10 [213] to build a new state-of-art GUI
and further integrated VICS-II and VEND into the next-generation 3D visualization system
VESTA, adding new capabilities.

VESTA is a 3D graphic application written in the C++ language on the basis of OpenGL
technology. It runs fast on personal computers equipped with video cards accelerating OpenGL.
Windows, macOS, and Linux versions are available. For each platform, both 32- and 64-bit
applications will be distributed on the Web.

Thanks to wxWidgets, we can open multiple files using tabbed graphic windows; pull-down
menus and tabbed dialog boxes are also supported. Needless to say, the annoying bug related to
the close button described above has now been fixed. VESTA allows us to deal with a practically
unlimited number of objects as far as memory size goes. It requires much less system resources
than VICS and VEND.

VESTA represents crystal structures as ball-and-stick, space-filling, polyhedral, wireframe,
stick, and displacement-ellipsoid models. Ball-and-stick, wireframe, and stick models can be
overlapped with dotted surfaces corresponding to van der Waals radii. Polyhedra may be made

8http://fujioizumi.verse.jp/visualization/VENUS.html
9The review article [210] is obtainable at http://www.fkf.mpg.de/4111956/cpd32.pdf

10http://www.wxwidgets.org/
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translucent so as to make inside atoms and bonds visible. We can insert a movable lattice plane
with variable opacities into a structural model. Drawing boundaries can be defined by ranges
along x, y, and z axes as well as lattice planes.

Electron/nuclear densities, wave functions, and electrostatic potentials are visualized as
isosurfaces, bird’s-eye views, and two-dimensional (2D) maps. VESTA has a feature of surface
colorization to show another kind of a physical quantity at each point on isosurfaces. Translucent
isosurfaces can be overlapped with a structural model.

The latest version of VESTA can read in files with 47 kinds of formats such as CIF,11

ICSD12 [146], and PDB.13 VESTA outputs files with 19 kinds of formats such as CIF and PDB.
Users of RIETAN-FP must be pleased to learn that standard input files, hoge.ins, can be both
input and output by VESTA. Three-dimensional electron densities in files hoge.xplor output by
superflip [179] in the X-PLOR/CNS format can easily be visualized to locate atoms in unit cells
with negative densities removed for clarity.

The entire crystal data and graphic settings can be saved in a small text file, hoge.vesta,
without duplicating huge 3D voxel data. File hoge.vesta with the VESTA format contains relative
paths to 3D data files and optionally a crystal-data file that are read in automatically when
hoge.vesta is reopened. VESTA also makes it possible to export graphic files with 14 image
formats including 4 vector-graphic ones.

VESTA 3

We further developed a next-generation 3D visualization system, VESTA 3 [26], whose main new
features are summarized below:

1. drawing the external morphology (faces) of crystals,

2. superimposing displays of multiple structural models and isosurfaces with different levels,

3. extended bond-search algorithm to allow more sophisticated search for complex molecules,
cage-like structures, etc.,

4. Significant performance improvements in rendering of isosurfaces and calculation of slices,

5. calculations of electron and nuclear densities, and Patterson functions from structure
parameters,

6. integration of electron densities or densities of coherent-scattering lengths by Voronoi
tessellation,14

7. improved support for various file formats,

8. undo and redo in GUI operations.
11http://www.iucr.org/resources/cif
12http://www.fiz-karlsruhe.de/icsd_home.html
13http://www.wwpdb.org/
14A C++ program for Voronoi tessellation was kindly presented by professor Takashi Ida of Nagoya Institute of

Technology.
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Dysnomia

As described above, Dysnomia [17, 23] is the successor to PRIMA [13]. Two types of MEM
algorithms, i.e., 0th-order single-pixel approximation [214], a variant of the Cambridge algorithm
[215], and the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [216],
were implemented in Dysnomia in combination with a linear combination of generalized F

constraints and arbitrary weighting factors for them. The fast L-BFGS algorithm makes it
possible to reach the exact solution giving the maximum information entropy without any
commercial program library such as MemSys [215].

Dysnomia outperforms its predecessor, PRIMA, in computation speed, memory efficiency,
scalability, and reliability. Dysnomia automatically switches between discrete Fourier transform
(DFT) and fast Fourier transform (FFT) algorithms depending on the number of observed
reflections, the number of voxels in the unit cell, and space-group symmetry. In both DFT and
FFT routines, symmetry operations are fully utilized wherever possible to reduce computation
time. In addition, recent advances in multi-core CPUs prompted us to introduce multi-threaded
parallel processing into MEM calculations.

Reliability indices in MPF analyses proved to be improved by use of multiple F constraints
and weighting factors based on d in comparison with those obtained with Dysnomia. For further
details in Dysnomia, refer to Refs. [17, 23].

ALBA

ALBA [20,21] is a Fortran 90 program for the maximum-entropy Patterson (MEP) analysis of
observed integrated intensities [19] (a) estimated by the Le Bail method from powder-diffraction
data and (b) determined from single-crystal diffraction data. The name of the program originates
from the most significant feature of the program; that is, MEP analysis is carried out After Le
Bail Analysis. Only a program for MEP analysis from integrated intensities obtained by the
Pawley method [130] has hitherto been developed by David of RAL. No MEP analysis program
has yet been distributed on the Web. Accordingly, we built a powerful MEM engine into ALBA,
making alterations to that of PRIMA [13]. Thus, ultra-fast MEP analysis is possible with ALBA.

Integrated intensities of overlapped reflections in powder-diffraction data are, more or less,
improved by the sophisticated MEP method, which is favorable for ab initio structure analysis
from powder-diffraction data.

ALBA is used in combination with RIETAN-FP or EXPO [22] for ab initio structure analysis
from powder-diffraction data by direct methods. ALBA outputs a binary file, hoge.pgrid, storing
3D Patterson functions, which are, in turn, visualized with VEND, as described in Section 5.
The resulting 3D images in the unit cell serve for construction of an initial structural model by
the heavy-atom method.

Most Rietveld-analysis programs incorporate the feature of Le Bail analysis because of the
ease with which it can be implemented in this type of software. ALBA allows us to improve
observed integrated intensities obtained with them for overlapped reflections, adding value to
them.
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Alchemy

Alchemy is a text converter to get file, hoge.mem, storing |FophKq| and σ p|FophKq|q for Dysnomia
from results of Rietveld analysis with RIETAN-FP, GSAS, and FullProf. Only a feature
of analyzing observed integrated intensities obtained from TOF neutron diffraction data by
GSAS [87] was reported with regard to Alchemy [211]. Only a minor feature to convert a MEM
data set binary file, hoge.fos, output by RIETAN-FP into a MEM data set text file, hoge.mem,
is currently opened to the public by giving two examples, fap and garnet, in Examples.tbz. The
resulting file, hoge.mem, can be analyzed by Dysnomia to give a feedback data file, hoge.fba,
and a 3D densities file, hoge.pgrid or hoge.den. Details of Alchemy will be reported elsewhere.

14.7.2 Optimization of density distribution by MPF

MPF comprises the following iterative procedures.

1. Intensity data in hoge.int are analyzed by the Rietveld method with RIETAN-FP on the
basis of a structural model. Optimum numbers of voxels along a, b, and c axes can be
determined by (1) inputting *.lst by VESTA, (2) selecting “Model Electron densities” under
the Utilities menu of VESTA, and (3) inputting resolution (ă 0.1Å). The resulting three
numerical values after “Dimensions” in the Text window are voxel numbers along the three
axes must be input as NBOXA, NBOXB, and NBOXC in *.ins.

2. RIETAN-FP estimates IophKq “ IopRietveldq with Eq. (4.26) and calculates FophKq “

FopRietveldq from IopRietveldq with Eqs. (4.28), (14.19), and (14.20). The real and
Imaginary parts of FopRietveldq, where contributions of X-ray dispersion, ∆F phKq, have
been subtracted in the case of X-ray diffraction (see Friedel pairs in 3.5.1), are output to
file hoge.fos in addition to IopRietveldq.

3. Dysnomia reads in hoge.fos, calculates σ p|FophKq|q “ σ p|FopRietveldq|q from IopRietveldq

and E with Eq. (14.18), and analyzes FopRietveldq and σ p|FopRietveldq|q by MEM to yield
3D densities, ρpx, y, zq, which are stored in file hoge.den (text file) or hoge.pgrid (binary
file). Dysnomia also computes F phKq “ F pMEMq by the Fourier transform of ρpx, y, zq’s
in the unit cell having a volume of V :

F pMEMq “ V

żżż

ρpx, y, zq exp
“

2πiphx` ky ` lzq
‰

dx dy dz. (14.21)

The resulting F pMEMq’s are output to file hoge.fba.

4. The ρpx, y, zq data stored in hoge.den or hoge.pgrid are visualized as isosurfaces in three
dimensions with VESTA.

5. After close examination of the density images, return to step 1 to modify the structural
model if necessary.

6. With RIETAN-FP, the model function is fit to the whole observed diffraction pattern by
refining parameters irrelevant to the crystal structure: peak-shift parameters, scale factor,
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profile parameters, lattice parameters, and background parameters (w.p.f.: whole pattern
fitting). Each structure factor in the model function is not calculated from any structure
parameters but fixed at F pMEMq (plus ∆F phKq in X-ray diffraction).

7. RIETAN-FP estimates IophKq in a similar manner as in Eq. (4.26), that is,

IophKq ” Iopw.p.f.q

“ ∆2θ
ÿ

i

yiB
Y 1
iK

ÿ

j

Y 1
ij

, (14.22)

and calculates FophKq “ Fopw.p.f.q from Iopw.p.f.q with Eqs. (4.28), (14.19), and (14.20).
The real and Imaginary parts of Fopw.p.f.q, where contributions of X-ray dispersion,
∆F phKq, have been subtracted in X-ray diffraction, are output to file hoge.fos in addition
to Iopw.p.fq.

8. Terminate unless decreases in reliability indices, usually Rwp, in step 6 are significant
compared with those in the previous whole-pattern fitting.

9. Dysnomia reads in hoge.fos, calculates σ p|Fopw.p.f.q|q from Iopw.p.f.q and E with Eq.
(14.18), and analyzes Fopw.p.f.q and σ p|Fopw.p.f.q|q by MEM to afford 3D densities,
ρpx, y, zq, from which F (MEM)’s are calculated by the Fourier transform using Eq. (14.21).

10. Return to step 6.

Let the total contributions of the nondispersive elements to F pMEMq be An ` iBn [67], which
is a structure factor in the absence of X-ray dispersion (see 3.5). An and Bn are output in
hoge.fba, as exemplified below:

$FB-MEM-DATA
1374

2 0 0 0.1802409E+02 0.1409778E-04
2 1 0 0.6445232E+01 -0.5900732E-05
0 2 0 -0.1726383E+01 0.6218339E-05
1 2 0 0.2330152E+02 -0.8580548E-04
2 2 0 0.3911456E+02 0.2979780E-04
3 1 0 0.8400697E+02 -0.4658433E-04
1 3 0 -0.5303686E+01 -0.4255980E-04
3 2 0 0.4795771E+02 -0.1949889E-04

....

The first and second lines are a comment and the total number of reflections, respectively. Each
line after the second line consists of h, k, l, An, and Bn.

MPF (lower box drawn with broken lines) follows the MEM/Rietveld analyses [204] (upper
box drawn with broken lines). Structural details are changed in step 3 while the agreement
between observed and calculated patterns is improved by fixing structure factors at F pMEMq in
step 6. It is the F (MEM) data that minimize the bias toward the structural model. Steps 6´10
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repeated till the convergence is attained is referred to as REMEDY cycles, serving to minimize
the bias imposed on density distribution by the structural model in Rietveld analysis. The
influence of the structural model in the Rietveld analysis on ρpx, y, zq’s diminishes by repeating
REMEDY cycles. In other words, intensity partitioning for overlapping reflections becomes
more accurate with increasing number of iterations owing to derivation of additional structural
information by MEM.

Such an iterative method is somewhat similar to the Le Bail method but differs from it in
the point that structure factors in whole-pattern fitting are fixed at values of F pMEMq resulting
from the previous MEM analysis. The REMEDY cycles weaken the influence of the structural
model on Fo(w.p.f.)’s. In other words, intensity repartitioning for overlapping reflections becomes
more appropriate with increasing number of cycles owing to extraction of additional structural
information from observed intensities of Bragg reflections.

It should be emphasized that step 6 is not Rietveld analysis but MEM-based whole-pattern
fitting to get |Fopw.p.f.q|’s on which structural information contained in the intensity data is
reflected more closely. Takata et al. [204] utilized not the whole procedures shown in Fig. 14.1
but only the part of iterative MEM/Rietveld analyses (upper box) for modifying structural
models, proving its validity and capability.

The goodness-of-fit must reach a high level for successful MPF. For this purpose, we have
been utilizing the powerful technique of partial profile relaxation (see 4.4) in both Rietveld
analysis and whole-pattern fitting with RIETAN-FP.

As described above, the phases, ψ, resulting from the final Rietveld analysis remain unchanged
throughout the REMEDY cycles though real ψ values change more or less before and after these
cycles. Therefore, the final structural model needs to be reasonable to minimize the changes in
ψ during MPF.

The above sophisticated methodology achieves a significant breakthrough in better represen-
tation of static and dynamic disorder, chemical bonding, nonlocalized electrons, and anharmonic
thermal motion. Crystal structures are expressed not by structure parameters but in practice
by 3D densities in voxels in the unit cell. MPF is, therefore, flexible enough to attain the
above purposes better than a traditional approach to structure refinement, i.e., Rietveld analysis.
MPF is generally effective in X-ray diffraction than in neutron diffraction because structure
factors are calculated from spherical atomic scattering factors by ignoring bonding electrons in
Rietveld analysis. Structures of organic compounds where chemical bonds are highly covalent
are particularly better represented by MPF than by Rietveld analysis.

The establishment of the MPF method leads to the availability of ultra-high-resolution
‘X-ray/neutron microscopes’ that allow us to visualize powder-diffraction data as 3D density
images. X-Ray and neutron diffraction can be complementarily utilized for (a) more adequate
expression of chemical bonding and (b) analysis of static and dynamic disorder, and anharmonic
thermal vibration, respectively.

Table S-7 at the end of this document lists features of four methods of whole-pattern
fitting: Pawley method [130], Le Bail method [9] (see Chap. 10), Rietveld method [10] (see Chap.
2), and whole pattern fitting in MPF (this chapter). Of course, the main purpose of MPF in
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which MEM analysis and whole-pattern fitting are repeated is the determination of electron-
or nuclear-density distribution. MPF can also be regarded as a kind of structure refinement,
where crystal structures are represented not by structure parameters but virtually by density
distribution in the unit cell.

14.7.3 Three reflection types

The algorithm for MEM analysis of FophKq’s is fundamentally the same, regardless of diffraction
procedures. Some special techniques are, however, required to analyze FophKq’s derived from
powder data. In principle, the MEM deals with isolated reflections whose phases have been
estimated by some means. For convenience, they are referred to as type 1 reflections. FophKq’s
gotten with the result of Rietveld analysis fall into type 1.

Assigning the sum of FophKq’s for a group of overlapped reflections may enhance the ability
of estimation by MEM. The sums of FophKq’s are therefore allowed to be given for overlapped
reflections belonging to type 2.

In the case of type 3 reflections, their peak positions are so near to 2θmax that their full
profiles are not included in the 2θ region analyzed in step 6. Such high-angle reflections are
marked with ‘H’ (see 17.8.10) in ‘Summary of possible reflections’ output at the tail of hoge.ins.
Nevertheless, we should also calculate the F (MEM)’s of type 3 reflections because excluding
them necessarily leads to a bad profile fit near 2θmax. The F (MEM)’s of type 3 reflections are
thus estimated from electron/nuclear densities determined with only FophKq’s for reflections of
types 1 and 2.

On the execution of MPF, be sure to specify ‘1: Yes (output structure factors including those
for grouped reflections and estimated for unobserved reflections) for a question ‘Will you save
a feedback data file?’ Otherwise, a fit between observed and calculated patterns near 2θmax

become worse, which leads to an appreciable increase in Rwp.
Type 2 reflections are decomposed to yield their individual FophKq’s. FophKq’s, sums of

FophKq’s, and only hkl indices are provided for reflections with types 1, 2, and 3, respectively.
For overlapped reflections of type 2, the evaluation of Fo(Rietveld)’s by Rietveld’s procedure

[10] may depend strongly on the structural model adopted in Rietveld analysis. Therefore, we
implemented an option in which the sums of FophKq’s, Go, may be supplied for part of overlapped
reflections to Dysnomia:

Go “

»

—

—

–

ÿ

K

IophKq

s
ÿ

K

mKPKLpθKq

fi

ffi

ffi

fl

1
2

(14.23)

with the summation
ř

K carried out over all the overlapped reflections. The standard uncertainty
of G0 is estimated by
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similar to Eq. (14.15). Go’s derived in this manner are input by Dysnomia as type 2 data.
Because overlapped reflections are decomposed during the first MEM analysis without use of

any structural model, they are regarded as type 1 reflections in subsequent processes in REMEDY
cycles.

14.7.4 Strategy for stable convergence

We should pay attention to electron-density maps obtained from F (MEM) data in addition
to the convergence test in each iteration. There is particularly a fair chance for structural
estimation to be misdirected at the first iteration. Accordingly, we need to repeat steps 6´10
while comparing density maps resulting from MEM analysis with those obtained from F (Rietveld).
This comparison is needed to judge whether the electron-density distribution is affected by the
structural model or estimated properly by MEM.

For reflections with unsatisfactory fits between observed and calculated intensities, standard
uncertainties, σp|FophKq|q, (see 14.5) should appropriately be increased to enhance the degree of
freedom in estimation by MEM; such large residuals usually arise from imperfect representation
of the real structure on condition that the intensity data are collected appropriately. If this part
were partitioned among overlapped reflections in proportion to their values of YiK , MEM would
estimate the structure in a way biased in favor of the structural model.

The efficiency of REMEDY cycles depends on the validity of the starting structural model.
If the structure refined in step 1 differs considerably from the real one, MEM analysis may fail
in structure refinement owing to the inaccurate partition of observed Bragg intensities among
overlapped reflections.

Reliability indices in the whole-pattern fitting are used as the measure of the convergence in
REMEDY cycles. Reliability indices in model-free MEM analysis are comparable regardless of
the progress of the REMEDY cycles because the convergence criterion is a constraint function
being equal to unity. Accordingly, the two reliability indices, Eqs. (14.12) and (14.13), output by
Dysnomia should not be used to judge the convergence of the iterations.

14.8 Features Relevant to MEM in RIETAN-FP

14.8.1 Rietveld analysis with NMEM = 1

If NMODE = 0 (Rietveld analysis) and NMEM = 1, FopRietveldq data estimated on the basis of
the result of Rietveld analysis are output to a MEM data set binary file, hoge.fos. This file is
read in by Dysnomia, which carries out MEM analysis to record a 3D densities file, hoge.den
or hoge.pgrid, and a feedback data file, hoge.fba, storing structure factors, F (MEM). VEND
or VESTA is used to input hoge.pgrid or hoge.den to visualize 3D electron/nuclear-density
distribution. The structural model in the Rietveld analysis is rebuilt after close checking of the
density image, if necessary. These processes correspond to the so-called MEM/Rietveld method
(see 14.6).
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14.8.2 Subsequent MPF analysis

Further, MPF must be used to determine more accurate electron/nuclear densities. When
NMODE is 2 (MPF) and NMEM is 1 (first phase) in hoge.ins, F (MEM)’s are input from hoge.fba by
RIETAN-FP, and whole-pattern fitting, where parameters other than structure parameters are
refined, is carried out by a nonlinear least-squares method. The resulting |Fopw.p.f.q| are output
to hoge.fos, which is analyzed by MEM to get hoge.fba again. In this way, MEM analysis with
Dysnomia and whole-pattern fitting with RIETAN-FP are alternately repeated until reliability
indices in the latter no longer decrease.

In MPF (NMODE = 2, 3), all the structure parameters that have been refined in the final
Rietveld analysis must be input together with their ID(I)’s (dummies). They are used to calculate
dispersion corrections in X-ray diffraction whereas they are dummy data in neutron diffraction.
Even if part of ID(I)’s for structure parameters are set at 1, they are regarded as 0 in the
interest of saving time. Accordingly, we need not change ID’s at all when proceeding from
Rietveld analysis to MPF. ID(I)’s set at 2 and corresponding linear constraints other than those
for structure parameters may be left in hoge.ins without any changes. In other words, linear
constraints for structure parameters must be commented out, if any, in MPF.

14.8.3 Option for exceptional treatment of relaxed reflections

|F phKq|’s of reflections whose profiles are relaxed can be refined directly in MEM-based whole-
pattern fitting; |F phKq| is input after label ‘PPPn_h.k.l’ (see 17.3.15). This feature, which can
be used if NMODE = 3 and (NPRFN = 1, 2, or 3), may accelerate the convergence of MEM-based
structure refinement, provided that calculated profiles are in good agreement with observed ones
for the relaxed reflections. We recommend to apply this feature to only (a) X-ray diffraction data
of centrosymmetric compounds and (b) neutron diffraction data in order to avoid the complexity
of Friedel pairs.

14.8.4 Automatic MPF analyses

If E in Eq. (14.18) is set at too large a value, each of Fc(MEM) is confined within a very narrow
range near FophKq to cause increases in noise in real space. E is usually determined so as to give
reasonable σphKq’s and achieve fast convergence with fewer MEM cycles. In addition, E must
be adjusted in such a way that the resulting density distribution is physically and chemically
reasonable. These conditions unnecessarily require us to test a series of different E values to
optimize it; meanwhile, MEM analyses must be repeated during REMEDY cycles, as described
above. Executing a series of MPF analyses while changing E values is, of course, very laborious
and susceptible to making mistakes because file handling and editing must be repeated several
times.

To enhance laborsaving, convenient shell scripts, MPF_multi.command, written in bash for
automatic execution of MPF analyses were developed [17]. They are included in the distribution
files of RIETAN-FP–VENUS systems.

Figure 14.3 illustrates a flowchart of a series of MPF. Because hoge.prf is never overwritten,
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Input Ei (i = 1, 2, .....) 
from *.prf (template)

i = 1

No
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RIETAN-FP REMEDY
cycles

Copy *.prf (template)
Change E values

M E M

NMODE = 2
in *.ins (Rietveld)

Whole-pattern
fitting

Lower Rwp?

i = i +1

Dysnomia

Figure 14.3: A flow chart of automatic MPF analyses for a set of Ei values.

it must be deleted prior to the execution of RIETAN-FP to update it. analyses where E is
changed as specified in an input file, hoge.prf, for MEM analysis. With RIETAN.bat (a batch
file for Windows) and RIETAN.command (a shell script for macOS) to run RIETAN-FP, both
hoge.prf and MPF_multi.command are automatically created in the current directory if NMEM
is set at 1 in hoge.ins. Input files for Dysnomia and RIETAN-FP are automatically set up by
MPF_multi.command, while reliability indices, elapsed time, and other information about the
Rietveld, MEM, and w.p.f. analyses are recorded in a log file, hoge.log. The optimum value of
E is determined by (a) checking hoge.log closely and (b) visualizing 3D voxel data recorded in
hoge.den or hoge.pgrid.

The two scripts have been working well for MPF analyses of a variety of compounds with
combinations of RIETAN-FP and Dysnomia, helping us to make the analyses more efficient and
pleasant. The content of an output file, hoge.rin, in an MPF analysis of fluorapatite from X-ray
diffraction data with E = 2894 rad´1 is listed below:

Rietveld analysis
Rwp = 8.214 Rp = 6.390 RR = 9.879 Re = 5.588 S = 1.4699.....
RB = 3.782 RF = 1.924 RF^2 = 1.933 E(SCIO) = 2832.06

MEM-based pattern fitting with E = 2894

MEM analysis No. 1
Elapsed time: 35.223 s
Number of cycles = 2814
CONSTR = 9.9999742E-01 RF = 0.010790

CONSTRw = 9.9999742E-01 wRF = 0.011087

131



CHAPTER 14. WHOLE-PATTERN FITTING BASED ON THE MAXIMUM-ENTROPY METHOD

w.p.f. No. 1
Elapsed time: 1.694 s
Rwp = 7.549 Rp = 5.721 RR = 8.828 Re = 5.598 S = 1.3485.....
RB = 1.402 RF = 0.902 RF^2 = 0.924 E(SCIO) = 2830.47

MEM analysis No. 2
Elapsed time: 38.043 s
Number of cycles = 3009
CONSTR = 9.9999823E-01 RF = 0.010909

CONSTRw = 9.9999823E-01 wRF = 0.010690

w.p.f. No. 2
Elapsed time: 1.730 s
Rwp = 7.599 Rp = 5.691 RR = 8.784 Re = 5.598 S = 1.3575.....
RB = 1.312 RF = 0.857 RF^2 = 0.904 E(SCIO) = 2832.48

This MPF analysis converged in w.p.f. No. 1 because Rwp increased from 7.549% in w.p.f. No.
1 to 7.599% in w.p.f. No. 2. Rwp decreased considerably from 8.214% in the Rietveld analysis to
7.549% in w.p.f. No. 2, which is mainly ascribed to the high covalent character of P–O bonds in
phosphate ions.
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STRUCTURE REFINEMENT
BASED ON
MAXIMUM-LIKELIHOOD
ESTIMATION

Structure refinement from powder diffraction data is based on the premise that the sample
contains an infinite number of crystallites which satisfy Bragg’s condition of diffraction. However,
unless the sample powder is fine enough, this prerequisite no longer holds approximately, which
exerts a dominant influence of statistical variations (particle statistics) on observed diffraction
intensities [48, 217]. Particle statistics are improved by measuring diffraction data while rotating
a sample holder in a sample plane, which has a disadvantage that the quantity of the sample is
considerably increased.

Ida and Izumi [218,219] proposed an original method of structure refinement where statistical
uncertainties are estimated from X-ray powder diffraction data measured with the Bragg–Brentano
geometry without rotating the sample. In this method, a proper model is constructed for the
statistical uncertainty at each observed point, and structure and profile parameters are refined
by maximum-likelihood estimation (MLE) [220] on the basis of the statistical-uncertainty model.
In their approach, the objective function to be minimized by nonlinear least-squares fitting is
modified from Eq. (2.1) to

Spxq “

N
ÿ

i“1

#

lnσi `
ryi ´ fipxqs

2

σi

+

(15.1)

with
σ2i “ rσipcountqs2 ` rσipparticleqs2, (15.2)

where σi is the standard uncertainty of the observed intensity, yi, at step i, σipcountq is that due
to counting statistics (wi “ 1{rσipcountqs2 in Eq. (2.1)), and σipparticleq is that due to particle
statistics. In conventional X-ray diffraction experiments,

rσipcountqs2 “ yi, (15.3)

rσipparticleqs2 “
Cpparticleqryi ´ ybp2θiqs2 sin θi

mK
, (15.4)
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where Cpparticleq is the unknown proportional constant, ybp2θiq is the background function at
step i, and mK is the multiplicity. The value of Cpparticleq can be uniquely determined by
minimizing Spxq.

Ida and Izumi applied this elaborate technique to X-ray powder diffraction data of fluorapatite,
lead(II) sulfate, and barium sulfate and successfully obtained structure parameters that are close
to those resulting from single-crystal X-ray analyses, which is a strong piece of evidence for the
validity of their new methodology.

This sophisticated methodology is particularly effective for samples that are not fine enough
and those containing heavy elements. A software package, which consists of macros for Igor Pro,
for the new technique is distributed free of charge at a Web page of Ida.1 RIETAN-FP is used as
a pattern-fitting engine in the new method of structure refinement.

On the use of this technique, integer flags NINT, NPAT, and INDREF in hoge.ins must be set as
follows:

NINT = 11: General-3 format.

NPAT = 2: Output an Igor text file, hoge.itx, to plot Rietveld-refinement patterns.

INDREF = 1: The profile of each reflection is output to waves XREF and YREF.

Refer to 17.4.12 and 17.7.2 for further information about the above flags.

1Available for download at http://www.crl.nitech.ac.jp/~ida/research/introduction/ida_izumi/index-j.html
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Chapter 16

PORTING AND APPLICATION
INTERACTION

16.1 Supported Platforms

The following two operating systems are currently supported: macOS and Microsoft Windows
(hereafter abbreviated to Windows).

The distribution files for macOS and Windows were compressed into archive files with the
dmg and zip formats, respectively. The disk image file, ∗.dmg, can easily be mounted by
double-clicking on its icon. The zip file, ∗.zip, can easily be decompressed with any archivers for
Windows or a decompression feature included in Windows.

Regardless of the platforms, names of folders (entire file hierarchy) used to install the
RIETAN-FP–VENUS system and execution of programs contained in it must consist only of
alphanumeric characters, hyphen ‘-’, underscore ‘_’, and space. No safe performance is ensured
if other characters such as parentheses, ‘(’ and ‘)’, are contained in them. On the other hand,
Names of files used to execute programs in the RIETAN-FP–VENUS system must consist only
of alphanumeric characters, ‘-’, ‘_’, and dot ‘.’ (only one for the extension). Beware lest spaces
may be included. The extension may contain only alphanumeric characters

16.1.1 macOS version

RIETAN-FP for macOS was built with Intel Fortran Composer XE 2011 (update 13) for the
Intel 64 architecture. It is not a universal binary. Macs equipped with 64-bit processors are,
therefore, required to run it whereas it cannot be run on PowerPC Macs. This macOS version
has been built with a bash script for OS X 10.6.X (Snow Leopard) or later. It is a Terminal
(console) application dedicated for 64-bit operating systems.

On macOS, RIETAN-FP and related programs are run using shell scripts hoge.commands
created by make_commands, whose source code (make_commands.scpt) was written in Apple-
Script. Their standard outputs can be browsed with editors such as less, emacs, nano, vim,1

Jedit X (commercial program),2 and mi.3

1macOS includes less, emacs, nano, and vim.
2http://www.artman21.com/en/jedit_x/
3http://www.mimikaki.net/en/index.html
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Figure 16.1: Selecting ORFFE in the pull-down menu of macros after the Rietveld
refinement of fluorapatite. A file drawer appears at the right-hand side

In addition, the use of Jedit X makes it possible to use the RIETAN-FP–VENUS assistance
environment utilizing macros written in AppleScript. In this user-friendly environment, RIETAN-
FP and related programs can be driven with a pull-down menu of macros (Fig. 16.1), a context
menu (control + click), or keyboard shortcuts assigned by the user. Outputs from the programs
are automatically opened by Jedit X, whose multiple-tab window is very useful when dealing
with two or more files. Details in the RIETAN-FP–VENUS assistance environment are described
in Readme_scpt.pdf included in an archive file documents.zip.

16.1.2 Windows version

Though RIETAN-FP may run just fine on Windows XP/Vista, Windows 7/8/10 are preferred to
Windows XP/Vista because RIETAN-FP for Windows has now been used almost exclusively on
Windows 7/8/10.

RIETAN-FP for Windows was built with Intel Visual Fortran Composer XE 2013 SP1 for
IA-32 and Intel 64 architectures in combination with an application development environment
called Microsoft Visual Studio 2010 Shell bundled with Visual Fortran Composer XE 2013. Only
the 32-bit version is installed on 32-bit Windows with an installer, Install_RIETAN_VENUS.bat,
included in a distribution file.

An integrated assistance environment for RIETAN-FP–VENUS has been built to edit input
and output files, launch various applications including not only the RIETAN-FP and VENUS

136



CHAPTER 16. PORTING AND APPLICATION INTERACTION

Figure 16.2: Selection of an item, VESTA/vesta, in the pull-down menu of Macro
in the integrated assistance environment based on Hidemaru Editor. Buttons,
function keys, and tabs of files are seen in this window.

systems but also EXPO [22], superflip [179], EDMA [221], PowderX [104], MADEL (a Fortran
program to calculate electrostatic site potentials and a Madelung energy by the Fourier method),
WinPLOTR [107], and DICVOL14 [222] (with the aid of WinPLOTR), and manipulate files
within a popular text editor, Hidemaru Editor,4 for Windows. With the environment consisting
of original Hidemaru macros and a dynamic link library (DLL) called Dengaku DLL,5 we can
enjoy GUI operations through pull-down menus, buttons, function keys, and a popup menu using
mice and shortcut keys (Fig. 16.2).

Hidemaru macros are similar in grammar to the C language. It is, therefore, relatively easy
to delete, add, and reconstruct the structure of Hidemaru macros.

This assistance environment must be a great boon to those who hate character user interfaces
using the command prompt. For details in this environment, read Readme_macros.pdf contained
in the archive file documents.zip.

16.1.3 End-of-line characters in text files

Beware lest the end-of-line character in each text file is incompatible with the current operating
system. The end-of-line characters should be

1. Windows: CR+LF

2. macOS: LF or CR+LF

Be sure that the end-of-line character of all the text files used by RIETAN-FP on macOS is not
CR.

For further details in RIETAN-FP for the two platforms, see Readme files included in the
distribution files for macOS and Windows.

4http://hide.maruo.co.jp/software/hidemaru.html
5http://www.ceres.dti.ne.jp/~sugiura/
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16.2 Collaboration with VESTA

VESTA [1, 25, 26] is cross-platform free software to visualize crystal structures and 3D voxel
data in three dimensions. It is included in the 3D visualization system VENUS. A C++ GUI
framework called wxWidgets [213] is adopted in VESTA to build the graphical user interface of
VESTA, providing us with function wxExecute and class wxProcess to call external programs
easily from existing processes. Therefore, we can virtually extend VESTA by running other
applications as a child process, yet keeping its core code simple and small.

VESTA utilizes wxWidgets to simulate X-ray and neutron powder-diffraction patterns with
RIETAN-FP. On selection of the “Powder Diffraction Pattern¨ ¨ ¨ ” item under the Utilities menu,
a series of procedures, i.e., generation of an input file, hoge.ins, for RIETAN-FP (see 17.3),
execution of RIETAN-FP, and graphic representation of the resulting data in file hoge.itx with a
graphing program such as Igor Pro and gnuplot (see 17.7), are executed by VESTA as if they
were implemented in VESTA.

As described in 8, the feature of converting crystal lattices in VESTA helps us to relate the
MUC (magnetic unit cell) phase of a magnetic material to the CUC (crystallographic unit cell)
phase, facilitating Rietveld refinements of collinear magnetic structures. VESTA is also very
useful in representing magnetic structures by attaching arrows to magnetic atoms, as can be
appreciated from Fig. 8.2.

VESTA can also be used to visualize bonds and bond angles recorded in hoge.ffe output by
ORFFE [136] as well as atoms within the drawing boundaries (see 17.6).

The user of RIETAN-FP must be very pleased to hear that VESTA can both input and
output hoge.ins, which helps beginners to get a starting hoge.ins file. An output file, hoge.ins
(Fig. 16.3), is obtained from a template hoge.ins file specified in the “Preferences” dialog box
under the File menu in VESTA.

Figure 16.3: Outputting a hoge.ins file for BaSO4 in
VESTA
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VESTA can input a standard output, hoge.lst, of RIETAN-FP to display a crystal structure.
It should be noted that (site multiplicities) plus (Wyckoff letters) recorded in hoge.lst are saved
in hoge.vesta with the VESTA format (see 17.1).

VESTA is capable of outputting a series of *_hoge.vesta containing lattice and structure
parameters obtained in spcified cycles of nonlinear least-squares fitting. Let i (i “ 1, 2, 3, ...) be
cycle numbers in structure refinement, j the starting cycle number, and k the increment of cycle
numbers. If hoge.vesta shares the same folder with hoge.ins and hoge.int, including either of the
following two comment lines,

#Cycle j k (modified Marquardt method or Gauss–Newton method),
#Iter j k (conjugate-direction method),

RIETAN-FP creates a new subfolder named VESTA_folder if it is absent in the current folder
whereas all ∗.vesta files remaining in VESTA_folder are deleted in the presence of VESTA_folder.
Next, RIETAN-FP outputs a series of VESTA files, *_hoge.vesta, in subfolder VESTA_folder:

• Cyclei_hoge.vesta (i: cycle numbers in the modified Marquardt method or Gauss–Newton
method)

• Iteri_hoge.vesta (i: cycle numbers in the conjugate-direction method)

where lattice and structure parameters are dynimically updated to those refined in cycle number
j ` kpi´ 1q. During the execution of RIETAN-FP, crystal structures displyaed in VESTA are
dynamically updated by inputting *i_hoge.vesta by VESTA.

A utility program named lst2cif (see Appendix E) included in the distribution files of RIETAN-
FP enables us to convert hoge.lst and hoge.dst (see Appendix D) into a CIF (Crystallographic
Information File) [223], which can also be input by VESTA.
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INPUT AND OUTPUT FILES

17.1 Files Used by RIETAN-FP

RIETAN-FP inputs and outputs text files as many as 36 to carry out several different kinds
of jobs. These files fall into four categories: (a) data base files sharing the same folder with
the executable binary file of RIETAN-FP, (b) files input by RIETAN-FP, (c) files output by
RIETAN-FP, and (d) scratch files with no names.

Table 17.1 summarizes main input and output files of RIETAN-FP; part of them were
described in ref. [105]. Files belonging to categories (b) and (c) have to be named according to
a definite fashion. The names of the files in this section were given for a basename of ‘hoge’;
needless to say, ‘hoge’ in Table 17.1 should be replaced by any other name. Beware lest the
basename of each input file contains a space, ‘(’, or ‘)’.

Extensions of files in categories (b) and (c) may be changed appropriately by modifying batch
files (Windows) or shell scripts (macOS and Linux). For example, changing ‘itx’ into ‘pat’ is of
no matter at all. Nevertheless, the extensions in Table 17.1 will be described throughout this
document for convenience.

Unit numbers assigned to the input and output files in the source code must be useful when
error messages are received during inputting or outputting them because such messages usually
include unit numbers.

Note that those refinable parameters in hoge.ins which are contained in the model function
are updated after Rietveld analysis if NUPDT = 1, which is the reason why hoge.ins can be both
input and output by RIETAN-FP, as written in Table 17.1. This is the reason why hoge.ins may
be output by RIETAN-FP.

The format of two files, hoge.ffi and hoge.ins, is compatible with that of hoge.hkl output by
EXPO [22] to record results of Le Bail analysis. Accordingly, EXPO can be used after Le Bail
analysis using RIETAN-FP, and vice versa.

Table 17.1 includes the names of the following five related programs:

1. STRUCTURE TIDY [169]: a program (incorporated into RIETAN-FP) to standardize
crystal data,

2. ORFFE [136]: a program to calculate geometrical parameters from lattice and crystal-
structure parameters (included in the distribution files of RIETAN-FP),
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3. Dysnomia [17,23]: a program for MEM from X-ray and neutron diffraction data,

4. ALBA [20,21]: a program for the maximum-entropy Patterson method,

5. VESTA [1,25,26]: a 3D visualization system for crystal and electronic structures

A pair of file, xdc.plt and xdc.gpd, are, respectively, converted into xdc-∗.plt and xdc-∗.gpd
(*: atomic symbol) by a Hidemaru or AppleScript macro xdc to give a PDF file, xdc-∗.pdf, of a
graph where f 1 and f2 are plotted against λ (E) by gnuplot (see Fig. 3.2). The xdc macro is
applicable to both characteristic and synchrotron X rays.

PyAbstantia was written by Dr. S. Nishimura of the University of Tokyo to create a file,
BVS3d.pgrid, storing differences, |∆V |, between calculated and ideal BVSs. Only a macOS
version is presented at present. BVS3d.pgrid is relatively compact since it is a binary file
containing voxel data only in the asymmetric unit. PyAbstantia consists of three Python scripts
(pyabst.py, calbvm.py, and write_bvf.py) and a Fortran program, bvs_omp.so. Two Python
libraries must be installed to use PyAbstantia: NumPy1 and Pymatgen.2

Three-dimensional visualization of |∆V | values with VESTA is useful in shedding light on
conduction pathways of mobile ions in ion conductors such as lithium, sodium, and oxide ion
ones. Continuous spaces with |∆V | = 0.1–0.4 are desirable in ion conductors. The BVS mapping
is based on a most simplified model, neglecting some significant effects. We, therefore, need to be
conscious of its limitation. If the /Applications/PyAbstantia folder exists on Macs, PyAbstantia
can be launched by inputting NMODE = 1 and NBVS3D = 1 in hoge.ins after executing RIETAN-
FP on the RIETAN-FP–VENUS assistance environment. That is, the simulation mode of
RIETAN-FP enables us to plot X-ray and neutron powder diffraction patterns and, further,
visualize conduction pathways in ion conductors.

Arguments of the executable file for RIETAN-FP are

hoge.ins hoge.int hoge.bkg hoge.itx hoge.hkl hoge.xyz hoge.fos hoge.ffe
hoge.fba hoge.ffi hoge.ffo hoge.vesta hoge.plt hoge.gpd hoge.alb hoge.prf
hoge.inflip hoge.exp

while the standard output should be redirected to hoge.lst. Dysnomia, ALBA, and VESTA
are contained in the three-dimensional visualization system VENUS. If needed, parts of hoge.plt,
hoge.alb, hoge.prf, hoge.inflip, and hoge.exp may be modified before executing an external
program.

1http://www.numpy.org/
2http://pymatgen.org/
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Table 17.1: Input and output files of RIETAN-FP; No.: unit number, In: input, Out: output

File No. In Out Content

asfdc 2 ˝ A file storing numerical values such as atomic weights, eleven
coefficients for analytical approximation of atomic scattering
factors [55], dispersion corrections for characteristic X rays
[60], bound coherent-scattering lengths, bound incoherent-
scattering cross section, and absorption cross sections [24]

xdc.bin 90 ˝ A binary file storing f1, f2, frel, fNT, and Z for 92 elements
(see 3.5.1)

mac.tbl 93 ˝ A text file where mass attenuation coefficients, µm/(cm2

g´1), of 92 elements are recorded as a function of the photon
energy E/MeV [161] (see 7.2)

spgra 11 ˝ A file storing information on 230 space groups, e.g., coordi-
nates of equivalent positions compiled in Ref. [72] and Hall’s
symbols of space groups [224]

Spgr.daf 121 ˝ A file storing Hermann–Mauguin space-group symbols read
in by STRUCTURE TIDY (see Chap. 9)

Sets.daf 120 ˝ A file read in by STRUCTURE TIDY

constr_beta 12 ˝ A file storing types of constraints imposed on anisotropic
atomic displacement parameters, βij , for all the general and
special positions of 230 space groups [70, 71]; these types are
output after a list of final atomic displacement parameters

j0_j2.dat 130 ˝ A file storing coefficients to approximate
@

j0
D

and
@

j2
D

mag-
netic form factors [81]

hoge.ins 5 ˝ ˝ A standard input file created by a user (see 17.3)

N/A 4 ˝ ˝ A scratch text file converted by a preprocessor called Tink
(see 17.3) from hoge.ins

N/A 13 ˝ ˝ A scratch file (FORM = 'UNFORMATTED') output and input
when NRANGE = 1 (see 3.12.2)

N/A 14 ˝ ˝ A scratch text file output and input when imposing restraints
on geometrical parameters (see 5.2)

hoge.int 3 ˝ A file storing X-ray/neutron intensity data (see 17.4)

hoge.bgr 16 ˝ A file created by WinPLOTR [107] or pcr2bgr to store dis-
crete background intensities (see 3.12.3 and 3.12.4)

hoge.bkg 8 ˝ A file storing background intensities (see 3.12 and 11.2)

hoge.ffe 10 ˝ A file output by ORFFE [136] to store geometrical parameters
and their series numbers (see 5.2) for imposing nonlinear
constraints on geometrical parameters (hoge.ffe = hoge.dst
+ serial numbers; see Chap. 5); created only when hoge.ffe is
absent and NDA > 0

(continued on the following page)
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(continued from the previous page)

File No. In Out Content

hoge.fba 32 ˝ A file created by Dysnomia for whole-pattern fitting based
on MEM with RIETAN-FP (see 14.7.2)

hoge.itx 20 ˝ A file storing data to plot a Rietveld-refinement pattern
(observed, calculated, and difference patterns) or a simulated
pattern with a graphing program Igor Pro and RietPlot

hoge.hkl 21 ˝ An input file for Fourier or difference Fourier synthesis with
VESTA (see 14.7.1)

hoge.xyz 9 ˝ An input file for ORFFE [136] to calculate interatomic
distances and bond angles

hoge.fos 30 ˝ A file storing data to be analyzed by MEM with Dysnomia

hoge.ffi 22 ˝ A file storing initial estimated IophKq’s for Le Bail analysis;
output by RIETAN-FP, EXPO [22], and ALBA [20,21]

hoge.ffo 23 ˝ A file storing IophKq’s resulting from Le Bail analysis

hoge.vesta 98 ˝ An input file to draw a crystal structure with VESTA

hoge.plt 19 ˝ A gnuplot script file for plotting results of Rietveld analysis
or simulation of a X-ray or neutron powder pattern (see
17.7.1)

hoge.gpd 18 ˝ A gnuplot data file for plotting results of Rietveld analysis
or simulation of a X-ray or neutron powder pattern (see
17.7.1)

Rwp.gpd 15 ˝ A file storing reliability indices, Rwp, in all cycles.

hoge.alb 33 ˝ An input file for the maximum-entropy Patterson method
program, ALBA [20,21]

hoge.prf 34 ˝ An input file for the maximum-entropy method program,
Dysnomia [23]

hoge.inflip 31 ˝ An input file for charge flipping with superflip [179] for the
dual-space method

hoge.exp 24 ˝ An input file for ab initio structure analysis with EXPO [22]

hoge.lst 6 ˝ A standard output file corresponding to printer output

xdc.plt 91 ˝ A gnuplot script file, xdc.plt, to plot f 1 and f2 against λ
(E)

xdc.gpd 92 ˝ A text file where f 1 and f2 for constituent elements are
recorded as a function of λ (E)

BVS.inp 140 ˝ An input file for PyAbstantia to visualize bond-valence-sum
(BVS) maps [225,226]

BVEL.inp 140 ˝ An input file for PyAbstantia to visualize Bond-Valence
Energy Landscape (BVEL) maps [227]
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17.2 Limitation of Data Sizes

Table 17.2 lists integer constants to set maximum dimensions of many arrays are defined in
PARAMETER statements in the source code of RIETAN-FP. These values are so large that we
seldom need to increase them to adapt RIETAN-FP for specific refinements.

Table 17.2: Maximum numbers of data dealt with RIETAN-FP

Name Value Remark

NB 20000 Reflections
NP 80000 Intensity data points
NA 15 Chemical species including virtual ones
NT 2000 Parameters to calculate model functions
NR 1500 Refinable parameters
NSF 1200 Refinable crystal and magnetic structure parameters
NAP 400 Atoms in the asymmetric unit
NCS 400 Linear constraints

MAXNL 1000 Nonlinear restraints
NPH 16 Phases

MAXLAB 800 Labels
MAX_MAGN_ATOM 50 Magnetic atoms per phase

17.3 Standard Input File

Some Rietveld-refinement programs require fixed-column, formatted input data and codewords
for parameters contained in the model function. Such an input manner is too old-fashioned and
inconvenient for most users. Interactive menu operations using graphical user interfaces are much
more user-friendly but rather troublesome for routine use, making the overlooking of the whole
input data nearly impossible because of hierarchic menu structures. In addition, users cannot
modify the content of a menu system at all or write some comments on input data. RIETAN-FP
presents a novel and creative method of entering data using a preprocessor, Tink, for hoge.ins.
The resulting character user interface is suitable not only for experts of Rietveld analysis and/or
computers but for beginners.

Input files described in conformation to rules of Tink with a text editor are converted into
scratch files by a preprocessor called Tink, which was named after a pretty fairy, Tinker Bell, in
“Peter and Wendy.” Tink removes comments, skips unnecessary lines, decodes remaining lines,
and writes a scratch file. The resultant scratch file contains only integer-, real-, and character-type
variables input and dealt with actually by RIETAN-FP. Tink is simple but user-friendly, enabling
us to enter data without referring to the manual in nearly all the cases. Main advantages of
Tink over graphical user interfaces are its portability, straightforwardness, speedy operation, and
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flatness (i.e., not hierarchic).
Usually, we modify one of template files for hoge.ins, which are sufficiently self-explanatory,

included in distribution files of RIETAN-FP to adapt it to our analysis. Beware lest the order of
data in the template file is changed; this will cause a serious trouble during preprocessing by
Tink.

Another convenient manner of getting hoge.ins is conversion of a template file with a fixed
name, template.ins, into hoge.ins from a crystallographic information file (CIF), hoge.cif, by a
utility program, cif2ins, which can be used on the RIETAN-FP–VENUS assistance environment
(see 16.1). The starting files, template.ins and hoge.cif, must share the same folder, where hoge.ins
is output by cif2ins. A close check of hoge.cif is highly desirable. For the official specification
of the CIF, refer to the Web page of CIF.3 The progress of data processing by cif2ins can be
monitored in a command prompt window (Windows) or a Terminal window (macOS), where an
error message or warnings may appear. For example, execution of cif2ins by inputting a CIF of
brookite-type titanium(IV) oxide gives the following standard output:

Checking lengths of lines .....
Lines in this CIF are no longer than 80 characters
Reading a phase name .....
_chemical_name_mineral: Brookite
Phase name: Brookite
_chemical_formula_sum: Ti O2
Getting element names and amounts of substances from _chemical_formula_sum .....
Ti: 1
O: 2
Reading a Hermann-Mauguin symbol or a space-group number .....
_symmetry_space_group_name_H-M: P b c a
Space-group number obtained from spgr.daf: 61
Reading lattice parameters .....
Lattice parameters: 9.17400 5.44900 5.13800 90.0000 90.0000 90.0000
Determining kinds of columns from lines containing '_atom_site_' .....
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Strictly speaking, '_atom_site_U_iso_or_equiv' must be supplied in a CIF
Reading label/atom and structure parameters for all the sites ...
Ti 0.12890 0.09720 0.86280
O1 0.00950 0.14910 0.18350
O2 0.23140 0.11100 0.53660
Number of sites in the asymmetric unit: 3
Determining kinds of columns from lines containing '_atom_site_aniso_U_' if any .....
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_23

3http://www.iucr.org/resources/cif

145

http://www.iucr.org/resources/cif


CHAPTER 17. INPUT AND OUTPUT FILES

Reading label/atom and anisotropic itomic displacement parameters, U_ij .....
Ti 0.00554 0.00572 0.00294 0.00000 0.00024 -0.00028
O1 0.00725 0.00677 0.00348 -0.00101 0.00167 -0.00113
O2 0.00298 0.01143 0.00588 0.00152 0.00119 0.00184
Writing the top part before the title .....
Writing the title .....
Writing the element names and their amounts of substances .....
Writing the element names .....
Writing f' and f'' (= 0.0) .....
Writing the phase name .....
Writing the space-group number .....
Writing the Hermann-Mauguin symbol .....
Writing the lattice parameters .....
Calculating coefficients to convert U_ij into beta_ij .....
Writing structure parameters .....
Writing the remaining part .....

Inserting a line containing only ‘#std’ in hoge.cif makes it possible to output hoge.ins for
standardization of crystal data in conformity with Structure Tidy (see Chap. 9) in the simulation
mode (NMODE = 1). The standardization can be carried out by running RIETAN-FP subsequently
to input hoge.ins and obtain standardized lattice and structure parameters in hoge.lst. Then,
the resulting standardized crystal data must be introduced into hoge.ins by oneself.

17.3.1 General rules for inputting data consistently

The following eight rules should be obeyed throughout the input file.

1. One line should be less or equal to 80 columns.

2. Comments (see 17.3.2) may be input up to 150 columns. Comments in columns larger than
150 are wasted when updating hoge.ins by setting NUPDT at 1.

3. When two or more data are input in one line, one or more space(s) should be placed
between two data.

4. Never input tabs to separate two data or to indent lines.

5. If the number of data input in one line is variable and has not been determined as yet, the
end of input for the line must be indicated by ‘/’ at its tail.

6. When entering a series of lines whose number has not been determined as yet, the end of
these lines must be indicated by ‘}’ at the tail of the last line or at the top of the next line.

7. In (a) lines to contain two or more CHARACTER data or (b) lines where CHARACTER
data are mixed with numerical values (real and integer), CHARACTER data containing
at least one space, ‘ ’, have to be enclosed by a pair of single quotation marks to indicate
their ranges. Of course, CHARACTER data may be enclosed by a pair of single quotation
marks even if they contains no spaces.

8. Rule 7 is not applicable if the whole line is read in as a single CHARACTER variable.
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If rule 1 is violated, for example in line No. 871, an error message,

Line #871 may contain input data in columns exceeding 80

is output, and RIETAN-FP stops immediately. Rules 5 and 6 are required so as not to input
various numbers of data by users themselves. We can learn lines (positions) where ‘/’ and ‘}’
should be located, referring to template files included in the distribution files of RIETAN-FP.
For example, in the following lines to give mole fractions of two virtual chemical species, M1 and
M2 [228],

M1 Ba 0.633 Nd 0.367 /
M2 Nd 0.675 Ce 0.325 /
}

‘/’ in the second and third lines shows the end of input data for current virtual chemical species
while ‘}’ in the final line indicates the end of virtual chemical species. The above three lines
state that M1 is composed of 63.3% of Ba and 36.7% of Nd while M2 is composed of 67.5% of
Nd and 32.5% of Ce.

Beware lest two-byte characters, in particular a space, control characters, or tabs are input
as data, which causes inexplicable errors.

17.3.2 Comments

With several kinds of template files, we can easily learn which data should be input in each line
because many comment lines are included whose first columns are ‘#’. ‘#’ can be also located
after input data; the part from ‘#’ to the end of the line is regarded as a comment. Two-bytes
characters, e.g., chinese (kanji), hiragana, katakana, and hangul characters, can be used in
comments. These lines can be freely deleted or modified, and new lines as well as memoranda
may be added by users. Data located separately in two or more lines can be combined together
if they are input by list-directed READ statements. It is a disadvantage of menu operations that
no such memoranda can be added at all in the screen output.

Lines where the first character except space is ‘!’ are another kind of comment lines, in
analogy with Fortran 90/95. They can be used as bookmarks (Shiori in Japanese) in the
RIETAN-FP–VENUS integrated assistance environments using Hidemaru Editor and Jedit X
(see 16.1). Clicking a bookmark in an outline analysis frame (Windows) or an information drawer
(macOS) makes it possible to jump to the corresponding string in the text window of hoge.ins.
This feature greatly enhances the convenience of the assistance environments. For details in
Shiori, refer to Readme_macros.pdf for Windows and Readme_scpt.pdf for macOS.

Lines whose last characters are ‘{’ are regarded as comment lines if their lengths are less
than 81. Comments may be also placed after ‘}’ without being preceded by ‘#’. This feature
is very convenient when ‘{’ is followed by ‘}’ showing the end of a series of lines. That is, a
block surrounded by a pair, ‘{’ (begin) and ‘}’ (end) is made clear as in the C language. For
example, the input data for the virtual chemical species [228] (see 17.3.1) may include comments
as follows:
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Virtual chemical species {
M1 Ba 0.633 Nd 0.367 / # Metal on the rock-salt layer
M2 Nd 0.675 Ce 0.325 / # Eight-coordinated atom in the fluorite block
} End of virtual chemical species.

Another example of comments, which are attached to linear constraints imposed on structure
and profile parameters, are given below:

Linear constraints for parameters with ID(I) = 2 {
A(O2,B)=A(O1,B); A(O3,B)=A(O1,B); A(O4,B)=A(O1,B)
A(O5,B)=A(O1,B); A(O6,B)=A(O1,B); A(O7,B)=A(O1,B)
A(O8,B)=A(O1,B); A(O9,B)=A(O1,B); A(O10,B)=A(O1,B)
A(O11,B)=A(O1,B); A(O12,B)=A(O1,B)
A(GAUSS012,1)=A(GAUSS01,1)
A(GAUSS012,2)=A(GAUSS01,2)
A(GAUSS012,3)=A(GAUSS01,3)
A(LORENTZ012,1)=A(LORENTZ01,1); A(LORENTZ012,3)=A(LORENTZ01,3)
A(ASYM012,1)=A(ASYM01,1)
A(GAUSS013,1)=A(GAUSS01,1)
A(GAUSS013,2)=A(GAUSS01,2)
A(GAUSS013,3)=A(GAUSS01,3)
A(LORENTZ013,1)=A(LORENTZ01,1); A(LORENTZ013,3)=A(LORENTZ01,3)
A(ASYM013,1)=A(ASYM01,1)
} End of linear constraints.

Another type of comments is used which follow values of variables and start with colons (:);
this will be described in the next section.

17.3.3 Reading both names and values of variables

When the first word in a line is a variable name (INTEGER, REAL, or CHARACTER), ‘=’ plus
the value of the variable should follow it.

For example, the kind of the angle-dispersive diffraction method is input as

NBEAM = 1: Conventional X-ray powder diffraction with characteristic X rays.

‘NBEAM’ is the variable name, and its value is equal to 1. A colon placed after the value
and characters following it (‘: Conventional X-ray ¨ ¨ ¨ ’) are both optional and regarded as a
comment. Tink decodes this line to obtain the value of an integer (e.g., 2), a real (e.g., 3.14159),
or a string (e.g., ’Ba’). The name of an integer variable is also stored and referred to in logical
expressions in If blocks and Select case statements described below.

The variable name consists of alphabetical capital letters, numbers (0–9), and ‘@’ with the
first character being an alphabet. Its maximum length is 10 characters. In a manner similar to
that in Fortran, the first character of the name for an integer variable should be I, J, K, L, M, or
N whereas that of a real variable other than I, J, K, L, M, and N. Integer variables whose name
end with ‘@’ are local ones that are also referred to in logical expressions. However, they are not
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real data but dummy ones used only in preprocessing by Tink, disappearing after conversion of
hoge.ins. Duplications among labels should be eliminated at any rate.

In the following example, the value of NBEAM is set at 1 by giving ‘#’ at the tops of the
other two lines:

# NBEAM = 0: Neutron powder diffraction.
NBEAM = 1: Conventional X-ray powder diffraction with characteristic X rays.

# NBEAM = 2: Synchrotron X-ray powder diffraction.

If the value of NBEAM is changed, we have to remove one ‘#’ and add another ‘#’ in two lines,
which is somewhat troublesome. We may alternatively set the value of the variable after three
comment lines:

# NBEAM = 0: Neutron powder diffraction.
# NBEAM = 1: Conventional X-ray powder diffraction with characteristic X rays.
# NBEAM = 2: Synchrotron X-ray powder diffraction.

NBEAM = 1

Then, we need to only replace the value (in this case, 1) of the variable. Such a manner of
entering a variable value is convenient when it is frequently altered because only one number
need to be changed.

We have a convenient way of converting a whole line with the above form into a comment
line: putting ‘!’ instead of ‘:’ after the value of a variable. For example, the value of NBEAM is
set at 1 in the following way:

NBEAM = 0! Neutron powder diffraction.
NBEAM = 1: Conventional X-ray powder diffraction with characteristic X rays.
NBEAM = 2! Synchrotron X-ray powder diffraction.

The first and third lines are regarded as comment lines. The number of ‘#’ in the input file can
be reduced greatly according to this manner.

17.3.4 Comments written in multi-byte characters

As described in 17.3.2, the two types of comments may contain multi-byte characters. In such
a case, standard input files, hoge.ins, have to be saved with the encoding of EUC (Extended
UNIX Code) such as EUC-JP, EUC-CN, and EUC-KR. Otherwise, incomprehensible errors may
occur during conversion of hoge.ins by New Tink because parts of characters with other types of
encoding may be regarded as control characters by New Tink (e.g., in Shift_JIS) or lengths of
comment lines may be practically larger than 80 (e.g., in three-byte characters such as UTF-8).
Note that two bytes, i.e., two columns in hoge.ins, are used per Kanji or Kana character in
EUC-JP.

17.3.5 If block

Lines containing Fortran-like statements ‘If ¨ ¨ ¨ then’, ‘else if ¨ ¨ ¨ then’, ‘else’, and ‘end if’
serve to make Tink not hierarchic but completely flat. One or more lines may be inserted between
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‘If ¨ ¨ ¨ then’, ‘else if ¨ ¨ ¨ then’, ‘else’, and ‘end if’ to form an If block in the following
manner:

If NBEAM >= 1 then
LPAIR1 = 0: No Friedel pairs (hkl & -h-k-l) are generated.
LPAIR1 = 1! Friedel pairs (hkl & -h-k-l) are generated.

end if

If NBEAM = 1 and NTRAN = 1 then
DSANG = 0.5: Angle/degree of the divergence slit at the minimum 2-theta.
RGON = 185.0: Goniometer radius/mm.
SWIDTH = 20.0: Irradiation width/mm for the sample.

else if NBEAM = 1 and NTRAN = 2 then
PCOR1 = 0.5: Fraction of the perfect crystal contribution.
SABS = 1.0: (Linear attenuation coefficient)*(effective thickness).

else if NBEAM = 1 and NTRAN = 3 then
XMUR1 = 0.0: (Linear attenuation coefficient)*(radius).

end if

If NPRFN = 0 then
SHIFT0 0.14849 -1.14695E-1 1.28877E-2 0.0 1110

else
SHIFTN 7.11671E-2 2.42176E-2 3.77026E-3 0.0 1000

end if

The function of the If block is similar to that in Fortran. Six rules listed below have to be
obeyed on the use of the If block feature.

1. Up to two logical expressions may be placed either (a) between ‘If’ and ‘then’ or (b)
between ‘else if’ and ‘then’.

2. Each logical expression contains (a) the name of an integer variable, (b) a logical operator,
‘=’, ‘>’, ‘>=’, ‘<’, ‘<=’, or ‘<>’ (‰), and (c) an integer.

3. Two logical expressions are related to each other with a relational operator, ‘and’ (logical
multiplication) or ‘or’ (logical sum), e.g.,
If NPRFN = 0 and NASYM = 1 then

and
If NBEAM = 2 or NTARG = 3 then

4. When the condition described either (a) between ‘If’ and ‘then’ or (b) between ‘else if’
and ‘then’ is false (not satisfied), a block of data lines following this line is skipped
automatically.

5. If the condition is true (satisfied), the block of the data lines is read in by the program.
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6. A block of data lines after a line ‘else’ is input if no conditions above this line have been
satisfied.

The If block feature is most convenient because we can leave lines that would otherwise be
attached with ‘#’ or deleted. Someone may be afraid that this feature is not easy to understand
for most users. However, I believe that those who cannot comprehend this concept will never be
able to carry out Rietveld refinements, too.

Be sure that ‘If’, ‘then’, ‘else if’, ‘else’, and ‘end if’ must be input just as they are;
capital and small letters are differentiated during decoding lines containing them by Tink.

17.3.6 Select block

Select blocks similar to those in Fortran 90 can be used in RIETAN-FP. Only integer variables
may be place after ‘Select case’, for example, in the following lines

Select case NSAMPLE
case 1

(Data input if NSAMPLE = 1 are placed here)
case 2,3

(Data input if NSAMPLE = 2 or 3 are placed here)
case 4-6

(Data input if NSAMPLE = 4-6 are placed here)
case default

(Data that do not fall into the above cases are placed here)
end select

lines input by RIETAN-FP change, depending on the value of NSAMPLE. The statement
‘case default’ means ‘otherwise.’ ‘Select case’ is followed by the name of an integer variable,
and ‘case’ by up to two integers with ‘,’ or ‘-’ (different from ‘:’ in Fortran 90) between two
integers if any. Variable names and integers after ‘case’ are not enclosed by a pair of parentheses
unlike Fortran 90. Be careful to input ‘Select’, ‘case’, ‘case default’, and ‘end select’ just
as they are; capital and small letters are differentiated during decoding lines containing them by
Tink.

Tink converts Select blocks into equivalent If blocks, which is responsible for the limitation
of up to two integers after ‘case’. Complex selection such as ‘case 2,4,6’ and ‘1-3,5’ is not
allowed because integer values are assigned so as to require only simple selection.

17.3.7 Nest of If and Select blocks

A nest of up to two If and Select blocks is allowed provided, however, that inner blocks must
be indented at least 1 column, with two or three columns preferred to 1 column. As described
above, never use tabs for indention. This feature will be self-evident if template files included in
distribution files of RIETAN-FP are browsed. In the following example, an If block includes a
Select block:

151



CHAPTER 17. INPUT AND OUTPUT FILES

If NMODE = 4 then
# Initial values of multiplicity X |Fc|**2 for the 1st phase are
NSFF = 0: estimated according to the Wilson statistics.
NSFF = 1! read in from hoge.ffi.
NSFF = 2! all set at 100.0.

Select case NSFF
case 1

NCONST = 0: |Fc|'s are varied during least-squares fitting.
NCONST = 1! |Fc|'s remain constant during least-squares fitting.

case default
INCMULT = 0: The integrated intensity is regarded as |F|**2.
INCMULT = 1! The integrated intensity is regarded as m*|F|**2.

CHGPC = 1.0: Cut-off is at first set at CHGPC*PC.
end select

end if

Of course, all the data in the current Select block are input only when NMODE = 4.
Nests between If blocks and between Select blocks, and inclusion of an If block inside a Select

block are also permitted. The following lines exemplifies a case where an If block is included
within a Select block:

Select case LSER
case 0

LPAIR = 0! Input no pairs of site names, 'A' and 'B', for restrained A-B distances.
LPAIR = 1: Input pairs of site names, 'A' and 'B', for restrained A-B distances.

LTRIP = 0! Input no triplets of site names for restrained A-B-C bond angles.
LTRIP = 1: Input triplets of site names for restrained A-B-C bond angles.

If LPAIR = 1 then
# Bond lengths between l_min and l_max are restrained.
'A' 'B' l_min l_max Exp. value Allowed dev. {
'P' 'O' 1.3 1.7 1.50 0.08
} End of nonlinear restraints for bond lengths.

end if
If LTRIP = 1 then

# Bond angles between phi_min and phi_max are restrained
'A' 'B' 'C' phi_min phi_max Exp. value Allowed dev. {
'O' 'P' 'O' 99.47 119.47 109.47 6.0
} End of nonlinear restraints for bond angles.

end if
case 1

Ser. No. Exp. value Allowed dev. {
122 1.47 0.01
123 1.54 0.01
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178 108.0 3.0
} End of nonlinear restraints.

end select

17.3.8 Go to statement

If a line with a form of ‘Go to *destination’ (destination: a string given appropriately by
the user) is present in hoge.ins, Tink unconditionally jumps from this line to a line whose top is
*label. It is usually combined with an If or Select block. Note that ‘Go’ and ‘to’ must be input
just as they are; capital and small letter are differentiated during decoding lines containing them
by Tink.

An example of a Go to statement is included in template files, where a jump to a label named
*ORFFE is included if NMODE is 1:

If NMODE = 1 then
NDA = 0! No file storing ORFFE data is output.
NDA = n! Filename.xyz for ORFFE is output for the n-th phase (n > 0)
NDA = 0

Go to *ORFFE
end if
.....
*ORFFE
If NDA > 0 then
.....

17.3.9 Real and virtual chemical species

Real chemical species denote neutral atoms, cations, and anions whose various physical quantities
are stored in the database file asfdc. Table 17.3 lists their names with annotations given for
species attached with daggers.
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Table 17.3: Names of real chemical species recorded in file asfdc

No. Annotation

1 H.S: H H- D Stewart et al. [229]
2 He
3 Li Li7: Li+ 7Li (neutron diffraction)
4 Be Be2+
5 B B11: 11B (neutron diffraction)
6 C C.v: Mann [230]
7 N
8 O O- O2-
9 F F-

10 Ne
11 Na Na+
12 Mg Mg2+
13 Al Al3+
14 Si Si.v: Si4+ Mann [230]
15 P
16 S
17 Cl Cl-
18 Ar
19 K K+
20 Ca Ca2+
21 Sc Sc3+
22 Ti Ti2+ Ti3+ Ti4+
23 V Vm: V2+ V3+ V5+ σi = 5.187 barns
24 Cr Cr2+ Cr3+
25 Mn Mn2+ Mn3+ Mn4+
26 Fe Fe2+ Fe3+
27 Co Co2+ Co3+
28 Ni Ni2+ Ni3+
29 Cu Cu+ Cu2+
30 Zn Zn2+
31 Ga Ga3+
32 Ge Ge4+
33 As
34 Se
35 Br
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No. Annotation

35 Br-
36 Kr
37 Rb Rb+
38 Sr Sr2+
39 Y Y3+
40 Zr Zr4+
41 Nb Nb3+ Nb5+
42 Mo Mo3+ Mo5+ Mo6+
43 Tc
44 Ru Ru3+ Ru4+
45 Rh Rh3+ Rh4+
46 Pd Pd2+ Pd4+
47 Ag Ag+ Ag2+
48 Cd Cd2+
49 In In3+
50 Sn Sn2+ Sn4+
51 Sb Sb3+ Sb5+
52 Te
53 I I-
54 Xe
55 Cs Cs+
56 Ba Ba2+
57 La La3+
58 Ce Ce3+ Ce4+
59 Pr Pr3+ Pr4+
60 Nd Nd3+
61 Pm Pm3+
62 Sm Sm3+
63 Eu Eu2+ Eu3+
64 Gd Gd3+
65 Tb Tb3+
66 Dy Dy3+
67 Ho Ho3+
68 Er Er3+
69 Tm Tm3+
70 Yb Yb2+ Yb3+
71 Lu Lu3+
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No. Annotation

72 Hf Hf4+
73 Ta Ta5+
74 W W6+
75 Re
76 Os Os4+
77 Ir Ir3+ Ir4+
78 Pt Pt2+ Pt4+
79 Au Au+ Au3+
80 Hg Hg+ Hg2+
81 Tl Tl+ Tl3+
82 Pb Pb2+ Pb4+
83 Bi Bi3+ Bi5+
84 Po
85 At
86 Rn
87 Fr
88 Ra Ra2+
89 Ac Ac3+
90 Th Th4+
91 Pa
92 U U3+ U4+ U6+
93 Np Np3+ Np4+ Np6+
94 Pu Pu3+ Pu4+ Pu6+
95 Am
96 Cm
97 Bk
98 Cf

Capital and small letters are differentiated from each other in asfdc. Atomic scattering
factors of H.S were calculated by an isotropic approximation to the scattering factor for bonded
hydrogen on the basis of an analysis of the hydrogen molecule by Stewart et al. [229] while those
of C.v and Si.v are valence-state scattering factors computed from Hartree–Fock ground-state
wave functions [230]. For example, not ‘FE’ but ‘Fe’ must be input as a name of the element,
iron. Output lists are likewise represented using capital and small letters, which improves their
readability considerably.

On the other hand, virtual chemical species are those composed of two or more real species.
The use of such an imaginary species is very convenient when dealing with compounds where more
than two kinds of atoms occupy the same site, decreasing the number of structure parameters and
linear constraints imposed on them. Names and amount-of-substance fractions of the constituents
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real species must be given by the user. For example, for a virtual species named ‘LaCa’ consisting
of 90% of La and 10% of Ca, we input

LaCa La 0.9 Ca 0.1 /

Names of both real and virtual species may be input after label + ‘/’ in structure-parameter
lines.

In neutron diffraction, the chemical symbol of each magnetic atom is attached with ‘*’ if
crystallographic and magnetic unit cells coincide with each other. On the other hand, the
chemical symbol of each magnetic atom in the MUC phase (see 8.1) is attached with ‘%’. In this
case, the chemical species (including oxidation numbers) and Landé splitting factors, g, [82] of
the magnetic atoms are input in order, for example,

# The following line is input for Fe% (g = 0).
Fe2+ 0.0

17.3.10 Dispersion corrections of real chemical species

If NBEAM = 1 and NTARG <> 3, the dispersion corrections, f 1 and f2, of all the elements for
characteristic X rays (AgKα, MoKα, CuKα, CoKα, FeKα, and CrKα radiations) [60] are
input from asfdc by RIETAN-FP (see 3.5.1).

On the other hand, dispersion corrections for CuKβ radiation (NBEAM = 1 and NTARG = 3)
and synchrotron X rays (NBEAM = 2) can be given by the user. If f 1 “ f2 “ 0.0 are input for
each element (real chemical species) in hoge.ins, both of them are evaluated from the wavelength,
λ, with the binary file, xdc.bin. As described in 3.5.1, f0psin θ{λq ` f1 ` frel ´ Z ` fNT is used
as the real part of f when calculating f 1 and f2 with RIETAN-FP. If f1 ` frel ´ Z is preferred
to f1 ` frel ´ Z ` fNT, input the former in hoge.ins by yourself (see 3.5.1 and 17.8.1).

17.3.11 Generation of diffraction indices and multiplicities for reflections

Diffraction indices and multiplicities for possible Bragg reflections are generated by LAZY
PULVERIX implemented in RIETAN-FP. The KDRREF program built into RIETAN-2000 [5,7,8]
is no longer used because of serious bugs that cannot be fixed. LAZY PULVERIX, which is used
in the retrieval program in Inorganic Crystal Structure Database (ICSD) and PowderX [104], is
reliable.

For the volume name of “International Tables for Crystallography”–(space-group num-
ber)–(setting number), e.g., ‘A-129-2’, data corresponding to standardized crystal-structure data
(see 9) have to be entered. This data is needed to maintain compatibility with RIETAN-2000
and input coordinates of equivalent positions from spgra. The volume name should always be
‘A’ [72], in contrast to RIETAN-2000 where another volume name of ‘I’ was allowed.

17.3.12 Refinement identifiers

Let A(I) be the I-th parameter in a group of parameters, x, contained in the model function Eq.
(2.5), and ID(I) its refinement identifier. ID(I) specifies the behavior of A(I) during refinement
as explained in Table 17.4.
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Table 17.4: Control of A(I) with ID(I)

ID(I) Behavior of A(I)

0 Fixed.

1 Refined by a least-squares method.

2 A(I) and its partial derivative (only in the Gauss–Newton and modified
Marquardt methods) are calculated from other refinable parameters using
a linear equality constraint (see 17.3.16).

3 Applied only to PPPs for relaxed reflections (NPRFN = 1´3). A(I) is
calculated from SPPs in each cycle, which leads to variation of A(I)
during the refinement.

17.3.13 Profile functions

The profile function is selected from the following four options according to the value of NPRFN
(0´3).

NPRFN = 0

The pseudo-Voigt function of Thompson, Cox, and Hastings [96]. It was modified in such a way
that anisotropic profile asymmetry can be corrected for by a procedure of either Finger, Cox,
and Jephcoat (NASYM = 0) or (b) Howard (NASYM = 1).

NPRFN = 1

The split pseudo-Voigt function of Toraya [103]. Partial profile relaxation is also carried out with
the same function.

NPRFN = 2

The split pseudo-Voigt function of Toraya is applied to reflection not to be relaxed, in the same
manner as in NPRFN = 1. On the other hand, the modified split pseudo-Voigt function is applied
to relaxed reflections. ID(I) is the same as in the case of NPRFN = 1. The initial FWHM’s of
Lorentzian and Gaussian components are set equal to each other when ID(I) is 3.

NPRFN = 3

The split Pearson VII function of Toraya is used as a profile function, regardless of the use of
partial profile relaxation. ID(I) is the same as in NPRFN = 1.

NCUT = 1

If NCUT is 1, the user can specify the 2θ region where the profile of each relaxed reflection is
calculated. Set NCUT at 1 if NPRFN is 2; otherwise, RIETAN-FP will stop, issuing an error message.
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17.3.14 How to input labels, parameters, and refinement identifiers

Labels, parameters contained in the model function (background, profile, structure parameters,
etc.; see Supplement), and their refinement identifiers (unnecessary in the simulation of powder
diffraction patterns) are input according to the following rules.

1. A label is located at the top of a line without any preceding space, followed by a group of
parameters and corresponding refinement identifiers.

2. A label consists of alphabetical letters (a–z and A–Z), numbers (0–9), and ‘@’ with the
first character being a capital letter, except for labels for primary profile parameters of
relaxed reflections (see 4.4 and 17.3.15). Its maximum length is 25 characters (less than 8
characters are desirable for the sake of printing).

3. The label need not be enclosed by a pair of single quotation marks.

4. A label can be arbitrarily assigned to a group of parameters except that one label must be
always assigned to one crystallographic site by grouping all the structure parameters for
the site. The parameters are hereafter managed under the name of the label.

5. A label for an atomic site is attached with ‘/’ plus the name of a chemical species without
inserting any space. The term ‘chemical species’ denotes a real species included in the
database file, asfdc, or a virtual species derived from two or more real species for a mixed-
atom site. In neutron diffraction, use only neutral species (neither cations nor anions). For
magnetic atoms, ‘*’ must be attached to chemical species’ names.

6. Two or more lines may be used for parameters grouped under a label.

7. On the standardization of crystal data (see 9), it is preferable to give a site label consisting
of a chemical-species name (up to two alphabetical characters) plus an identification string
starting with a number, e.g., ‘Al3’, ‘O15a’, and ‘H123’. The maximum length of site labels
is six.

8. If a dummy ‘+’ sign is attached to an isotropic atomic displacement parameter, B, in such a
way as ‘+1.6’, the program automatically converts it into six anisotropic atomic displacement
parameters, βij . if A(I)’s in hoge.ins are updated after Rietveld analysis (NUPDT = 1),
final βij parameters are output in hoge.ins. On the other hand, the refinement identifiers
and linear constraints imposed on the anisotropic atomic displacement parameters [70,71]
must be input by the user.4 The number of structure parameters and refinement identifiers
per site is 10 in this case.

9. If a B value other than zero is input, and five zero values follow it as dummy parameters,
six βij values are calculated from B in a similar way as in rule 8.

4A file converter called B2beta, which is included in the the RIETAN-FP–VENUS assistance environment, is
convenient for this purpose. For details in B2beta, read Readme_macros.pdf (Windows) or Readme_scpt.pdf
(macOS).
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10. Refinement identifiers for fixed, varied, and constrained parameters are 0, 1, and 2,
respectively, as described in Table 17.4. “Constrained” means that a parameter whose
refinement identifier is equal to 2 is evaluated from other refinable parameter(s) with a
linear equality constraint.

11. In parts of noncentrosymmetric space groups, no origin can be assigned to a definite position.
For example, y coordinates of all the sites in space group P21 (general equivalent positions:
x, y, z; ´x, 1{2`y, ´z) are arbitrary; the refinement of all the y coordinates in such a space
group gives solutions where all the structure parameters are shifted by the same vector
(floating orign), leading to nonconvergence. In such cases, RIETAN-FP will be aborted,
giving the following message: The coefficient matrix is not positive definite. At
least one y coordinate should be not refined but fixed in structure refinement including
Rietveld analysis [231,232].

12. Lattice parameters whose ID(I)’s are set at 1 depend on crystal systems:

(a) Triclinic: a, b, c, α, β, and γ

(b) Monoclinic: a, b, c, and β

(c) Orthorhombic: a, b, and c

(d) Tetragonal: a and c

(e) Trigonal (hexagonal lattice) and hexagonal: a and c

(f) Cubic: a

Because constraints among a, b, and c are automatically satisfied, the ID(I)’s of the other
lattice parameters should be 0.

13. A group of refinement identifiers is input after structure parameters without inserting any
space among them.

14. Even if comments are attached just after refinement identifiers, they are deleted when
parameters in the input file are updated to refined ones. On the other hand, comment
lines inserted between these parameter lines remain unchanged when updating refined
parameters.

For instance

Fe/Fe3+ 1.0 0.3459 0.3459 0.5 0.6 01201

is a line input for a metal site. ‘Fe’ is the label for this site, ‘Fe3+’ is the name of a chemical
species, ‘1.0’ is the occupancy (g), ‘0.3459 0.3459 0.5’ are fractional coordinates (x, y,
and z), ‘0.6’ is the isotropic atomic displacement parameter (B), and ‘01201’ is the refinement
identifiers for the five structure parameters. The y coordinate is constrained to be equal to the x
coordinate.

Labels can be conveniently used when referring to (a) parameters in linear equality constraints
and (b) serial numbers for parameters varied in early refinement cycles. Each parameter number
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may be represented as ‘L,I’ or ‘L,S’, where ‘L’ is a label to which the parameter belongs, ‘I’ is
the parameter number within the group of parameters under label ‘L’, and ‘S’ is the symbol of a
structure parameter. Each parameter is then represented as ‘A(L,I)’ or ‘A(L,S)’ with the array
name ‘A’ and a parameter number in the parenthesis. ‘A(L,I)’ may be represented as ‘A(L)’ if I
is 1.

For structure parameters, we can use symbols, ‘g’ (occupancy, g), ‘x’, ‘y’, ‘z’ (fractional
coordinates, x, y, and z), ‘B’ (isotropic atomic displacement parameter, B), ‘beta11’, ‘beta22’,
‘beta33’, ‘beta12’, ‘beta13’, and ‘beta23’ (anisotropic atomic displacement parameters, βij),
instead of their numbers. We may replace ‘beta’ with ‘B’ for simplicity: ‘B11’, ‘B22’, ‘B33’, ‘B12’,
‘B13’, and ‘B23’. In the case of the line

Mg/Mg2+ 1.0 0.345 0.0 0.5 0.8 01001,

‘A(Mg,x)’ and ‘A(Mg,B)’ are respectively the x coordinate and isotropic atomic displacement
parameter for the Mg site. ‘A(Mg,x)’ and ‘A(Mg,B)’ may be alternatively expressed as ‘A(Mg,2)’
and ‘A(Mg,5)’, respectively.

Suppose that a fractional coordinate of a small number of digits are input for a special
position, for example, 0.167 in place of 0.166667 (1/6), 0.333 in place of 0.333333 (1/3), and
0.666 in place of 0.666667 (2/3). Such scamped work may cause serious troubles because of the
resulting failure in selection of equivalent positions by checking overlapping of atoms generated
with rotation matrices and translation vectors.

In MEM-based pattern fitting (NMODE = 2, 3), even if part of ID(I)’s for structure parameters
are set at 1, they are regarded as 0 (see 14.8.2). Accordingly, we need not change those ID’s at
all when proceeding from Rietveld analysis to MPF.

17.3.15 Labels for relaxed reflections

When the technique of partial profile relaxation is applied to part of reflections, PPPs, which
are of course optional, are placed after the background parameters. A label with a special
format must be given to each group of PPPs for a reflection whose PPPs are relaxed. It has a
form ‘PPPn_h.k.l’, where ‘n’ is the phase number, and ‘h’, ‘k’, and ‘l’ are indices of a relaxed
reflection. For example, if the 310 reflection for the first phase is anisotropically broadened, label
‘PPP1_3.1.0’ is input together with five PPPs:

PPP1_3.1.0 2.64612E-2 3.07702E-2 1.23737 0.617272 0.794 11111

These five PPPs are refined quite independently of SPPs for the relevant phase. Needless to
say, parts of the PPPs may be refined if necessary. Integrated intensities and peak positions for
the user-specified relaxed reflections are calculated in the same manner as those for the other
reflections.

When dealing with X-ray diffraction data of a noncentrosymmetric compound, RIETAN-FP
usually generates Friedel pairs, hkl and h̄k̄l̄, because X-ray dispersion makes their structure
factors slightly different from each other (see 3.5). In such cases, PPPs of reflection h̄k̄l̄ must be
constrained (ID(I) = 2) to be equal to corresponding PPPs of reflection hkl. For example, on
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use of the modified split pseudo-Voigt function, Eq. (4.33), the following linear constraints are
imposed on five PPPs of a Friedel pair (111 and 111 reflections) for the first phase:

A(PPP1_-1.-1.-1,1)=A(PPP1_1.1.1,1); A(PPP1_-1.-1.-1,2)=A(PPP1_1.1.1,2);
A(PPP1_-1.-1.-1,3)=A(PPP1_1.1.1,3); A(PPP1_-1.-1.-1,4)=A(PPP1_1.1.1,4);
A(PPP1_-1.-1.-1,5)=A(PPP1_1.1.1,5)

An ID(I) value of 2 can also be assigned to any PPP. If an A(I) value of 0.0 is input as a
dummy for a PPP of a relaxed reflection, its initial value is calculated from SPPs relevant to the
PPP. If you want to set a PPP at zero practically, use a trick of inputting A(I) which is very
near to zero, e.g., 10´15.

17.3.16 Linear equality constraints

Linear equality constrains can be imposed on profile and structure parameters. They are described
in a similar manner as assignment statements in FORTRAN except that each parameter is
represented as A(L,I) or A(L,S) as described above and that ‘/’ should not be included in the
right side. Five examples of linear constraints imposed on two SPPs, a fractional coordinate, an
occupancy, and an anisotropic atomic displacement parameter are given below:

A(Gauss2,1)=A(Gauss1,1)
A(Asym2,1)=A(Asym1,1)
A(Fe,y)=2.0*A(Fe,x)
A(Co1,g)=1.0-0.5*A(Cu2,g)
A(O2,B12)=0.5*A(O2,B22)

The parameter in the left side has always a refinement identifier of 2 and constrained in such a
way that the above equation is strictly satisfied. The right side includes at least one refinable
parameter but no fixed parameters. In the above constraint on g, only g(Cu2) is refined, and
g(Co1) is calculated from g(Cu2) with the above constraint. Of course, the above linear relation
is taken into account in the calculation of the partial derivative of the model function with
respect to g(Cu2).

We can describe two or more linear constrains in one line, marking off by semicolons (;) as
follows:

A(Fe,y)=2.0*A(Fe,x); A(N2,g)=1.0-0.5*A(O2,g); A(O2,B)=A(O1,B)

The number of linear constraints is equal to that of parameters whose refinement identifier is equal
to 2. Linear constrains on profile parameters are used in such a way that profile parameters of
impurity phases are set equal to those of the main phase. Imposing such constrains considerably
reduces the total number of profile parameters, in particular, in samples containing three or more
phases.

As described in 17.3.14, linear constraints on anisotropic atomic displacement parameters, βij ,
have to be input by the user or generated with a utility called B2beta. In the latter case, the first
coordinate triplet described in the “International Tables for Crystallography,” Vol. A [72] must
be input for each site because linear constraints recorded in file constr_beta are valid only for the
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first triplet [70]. For example, in space group P42{mcm (No. 132), not (1/2, 1/2, 3/4) but (1/2,
1/2, 1/4) should be input for site 2d to impose constraints β22 “ β11 and β12 “ β13 “ β23 “ 0.
For site 4i, not (x̄, x, 1/2) but (x, x, 0) has to be given on the use of constraints β22 “ β11 and
β13 “ β23 “ 0.

Keep in mind that standardization of crystal data by STRUCTURE TIDY (see Chap. 9)
with RIETAN-FP or VESTA always gives the first coordinate triplet for each site.

17.3.17 Parameters refined in each cycle

When NAUTO is 1 (incremental refinement), parameters refined in initial cycles are customized
by users. Parameter numbers are input by using L,I and/or L,S and separating two numbers
with one or more space(s). ‘/’ at the tail of a line indicates the end of refinable parameters in a
refinement cycle. If a line does not end with ‘/’, parameters in the next lines follow those in the
present line. ‘#’ is placed at the end of a series of lines. For example, if we input

BKGD,1 BKGD,2 BKGD,3 BKGD,4 BKGD,5 BKGD,6 BKGD,7 BKGD,8 SCALE,1 /
CELL,1 CELL,2 CELL,3 /
PRFL,1 PRFL,2 PRFL,3 PRFL,5 PRFL,7 PRFL,9 /
Ti,x Ti,B O1,y O1,z O1,B O2,g O2,B /
}

eight background parameters and a scale factor are refined in the first cycle, three lattice
parameters, a, b, and c, in the second cycle, six profile parameters in the third cycle, and seven
structure parameters in the fourth cycle. In subsequent cycles, all the parameters with ID(I)
= 1 are refined simultaneously. If NAUTO is 2, RIETAN-FP automatically specifies appropriate
combinations of refinable parameters for several cycles.

17.3.18 Introduction of a structural model derived by EXPO

Program res2ins deals with hoge.res with the SHELX format to introduce lattice and structure
parameters in it into an input file, hoge.ins, of RIETAN-FP. EXPO [22] outputs hoge.res by
selecting File Ñ Export Ñ Shelx (hoge.res). Double-click the batch file for res2ins to launch it.
Answer each question displayed after a line in hoge.ins. In the questions, “0/<Enter>” denotes
inputting “0” or pressing the Enter key. A backup file, hoge.ins.bak remains in the same folder
after updating hoge.ins.

Beware that occupancies are always set at unity, for convenience; those of partially occupied
sites should be changed if necessary.

17.4 Intensity Data File

RIETAN-FP can input intensity data files with the following 13 kinds of formats:

NINT = 0: RIETAN format,
NINT = 1: general (X-Y) format,
NINT = 2: Igor text file,
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NINT = 3: FVFM (Fully Variable ForMat),
NINT = 4: standard DBWS format,
NINT = 5: DBWS format for multiple detectors,
NINT = 6: free format,
NINT = 7: GSAS format with two types,
NINT = 8: HRPD (JRR-3M reactor, JAEA) formats with two types,
NINT = 9: Rigaku RINT 2000 ASCII format,
NINT = 10: MAC Science format.
NINT = 11: general-3 format.
NINT = 12: PANalytical XML format.

17.4.1 RIETAN format

Optional comment lines starting with ‘*’, is followed by a line where the total number of data
points, the minimum 2θ, and the step width (free format). Then, a series of diffraction intensities
are given with one or more spaces between two data; any number of data may be included in
each line. For example, in the case of Cu3Fe4P6.int included in distribution files, its top part is
as follows:

* Cu3Fe4(PO4)6, Cu K_alpha1 radiation
10000 10.000 0.010

9104 9375 9335 9396 9149 9450 9180 9274 9158 9382 9192
9115 9347 9273 9167 9238 9151 9237 9293 9313 9189 9407
9290 9113 9303 9267 9282 9025 9099 9211 9242 9323 9159
9163 9306 9173 9276 9127 9322 9217 9290 9220 9141 9180
9165 9153 9179 9116 9281 9147 9358 9189 9235 9219 9199
9080 9214 9216 9343 9164 9301 9161 9148 8993 9094 9124
9092 9073 9203 9294 9326 9161 9164 8989 8864 9078 9014
9267 9192 8997 8964 9232 9075 9168 8968 9164 9039 9155
.....

Let sample.int be the name of an intensity data file recorded with observed intensities in a
format of (10F8.0) or (10I8) without any comment lines. This file can be input by the ab initio
structure-analysis system EXPO [22] if the following lines are included in an input file, hoge.exp,
for EXPO:

.....
%DATA

.....
PATTERN sample.int
JUMP
RANGE thmin thmax thstep
.....

where JUMP is a directive to skip the first line containing the total number of data points, the
minimum 2θ, and the step width in sample.int, thmin is the minimum 2θ, thmax is the maximum
2θ, and thstep is the step width.
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17.4.2 General format

A string ‘GENERAL’ (capital letters) is given in the first line, the total number of data points in
the second line, which is followed by pairs of 2θ and diffraction intensities with one pair per line.
For example, in the case of Fapatite.int included in the distribution files, its top part is as follows:

GENERAL
5751
15.00 609
15.02 612
15.04 673
15.06 619
15.08 627
15.10 609
15.12 549
15.14 635
.....

The second line may further contain second (FADJUST) real value, which has to contain ‘.’
(period).

If FADJUST is input, each diffraction intensity is multiplied by FADJUST, which is convenient
when adjusting the goodness-of-fit indicator, S (see 4.3.1); S is proportional to c1{2 whereas Rwp

remains constant regardless of the value of FADJUST.
This format is useful when the step width is not constant. In such a case, the first line

should be not ‘GENERAL’ but ‘GENERAL$’. The last character, ‘$’, is required to calculate observed
integrated intensities in order when step widths with respect to 2θ vary two or more times for one
reflection. This tip is generally effective when an error message “Too large NREGION” appears
during calculation of reliability indices.

Files with the general format can be directly input by PowderX [104] on specification of
X-Y (hoge.xrd) in the Import Data submenu under the File Menu.

The method of converting file hoge.raw obtained on HERMES [233] into a file with the
general format is described in a Web page of HERMES.5

17.4.3 Igor text format

Files of this format can be input by Igor Pro of WaveMetrics, Inc. A string ‘IGOR’ is given in the
first line, and ‘WAVES/D two-theta int’ in the second line, ‘BEGIN’ in the third line, which is
followed by pairs of 2θ and diffraction intensities with one pair per line. The final line should be
‘END’ to show the end of data.

IGOR
WAVES/D two-theta int
BEGIN
0.5658 2848

5http://nc-imr.imr.tohoku.ac.jp/HERMES/Analysis/RIETAN/int_HERMES.html
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0.5708 2886
0.5758 3375
0.5808 3932
0.5858 4373
0.5908 5016
0.5958 5347
.....
32.6758 3429
32.6808 3515
END

17.4.4 Fully variable format

RIETAN-FP can read in intensity files, hoge.int, for angle-dispersive X-ray powder-diffraction
data taken with variable times per step to improve counting statistics in high-angle regions. An
example of such files are shown below:

FVFM
5.010 84.0 1.0
5.020 90.0 1.0
5.030 88.0 1.0

.....
109.990 52.0 2.0
110.000 52.0 2.0

where a label ‘FVFM’ (Fully Variable ForMat) is located at the first line, which is followed by a
series of 2θ’s, counts, and multiplicities for measurement times per step. All the counts must be
divided by the multiplicities to achieve smooth connection of the intensities. Statistical weights,
wi, in Eq. (2.1) are automatically calculated from the intensities and multiplicities.

17.4.5 Standard DBWS format

In a Rietveld-analysis program DBWS-9807a6 [41, 234], an intensity file with this format is
input if (JOBTYP = 0 or JOBTYP = 1), INSTRUM = 0, and IDATA = 0. The first line contains the
variables START, STEP, STOP, and DATAID in FORMAT(3F8.3, A48):

START: beginning angle in degrees 2θ,
STEP: step size in degrees 2θ,
STOP: last angle in degrees 2θ,

DATAID: an alphanumeric string identifying the data.

The rest of the file consists of the intensity data themselves in FORMAT(8(F7.0,1X)). There may
be, but need not be, a ninth column listing the 2θ angle for the last datum in each row as listed
below:

6http://www.ccp14.ac.uk/ccp/web-mirrors/dbws/downloads/young/download_dbws.html
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20.120 .020 60.100 PS999RF 24AP90 QUARTZ, 6-7-86 T=10 20.120
30 34 44 37 35 25 29 46 20.260
42 34 40 35 21 39 43 30 20.420
48 44 52 44 50 46 47 56 20.580
64 62 86 79 103 124 197 257 20.740
484 831 1558 2478 3169 3185 2534 1828 20.900

1217 661 263 173 128 79 88 68 21.060
.....

17.4.6 DBWS format for multiple detectors

In DBWS-9807a [41], an intensity file with this format is input if JOBTYP = 1, INSTRM = 1, and
IDATA = 0. This format is suitable when analyzing intensity data measured on a diffractome-
ter equipped with multiple diffracted-beam detectors (but not all detectors contribute to the
count at every step). The first line contains the variables START, STEP, STOP, and DATAID in
FORMAT(3F8, A56):

START: beginning angle in degrees 2θ,
STEP: step size in degrees 2θ,
STOP: last angle in degrees 2θ,

DATAID: an alphanumeric string identifying the data.

The rest of the file comprises the number of counters and the intensity data in a format of
FORMAT(10(F2.0,F6.0)):

NCOUNT: number of counters,
Y(I): average intensity.

RIETAN-FP uses these data to reconstruct the originally observed total count at each step and,
from that, to assign the statistically correct weight to each observed step intensity.

17.4.7 Free format

This is the third format supported by DBWS-9807a [41]. The first line contains the variables
START, STEP, STOP, and DATAID in (3F8.2, A48) format, just as in the standard DBWS format.
The rest of the file consists of only intensity data in free format. Any number of columns of
any width are allowed. The delimiters are commas or spaces. Diffraction angles should not be
input. Files with this format can be input by DBWS-9807a if (JOBTYP = 0 or JOBTYP = 1),
INSTRUM = 0, and IDATA = 1. FullProf [110] is also capable of inputting files with this format if
Ins = 0.

17.4.8 GSAS format

When reading in a file with the GSAS format [87], RIETAN-FP searches through the header
line starting with ’BANK’ to find the start angle, step width, and stop angle. The rest of the
file contains intensity data in FORMAT(10(F2.0,F6.0)) for TYPE = 'STD' or FORMAT(5(2F8.0))
for TYPE = 'ESD'. RIETAN-FP automatically determines whether the current intensity data
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file has the STD or ESD type. No commas or angle data are allowed. The ESD type is useful on
count loss correction. Note that in the GSAS format for the data all rows must be filled out to
80 characters. Use spaces to fill out the row(s) if necessary. FullProf [110] can also input files
with this format (TYPE = 'STD') if Ins = 12.

An example of an intensity data file with the STD format is given below:

Y3FE2(ALO4)3 RT 1.909
BANK 1 2679 268 STD 2400 5 0 0
1 162 1 178 1 155 1 166 1 180 1 181 1 170 1 170 1 165 1 183
1 192 1 187 1 197 1 202 1 192 1 187 1 176 1 174 1 194 1 196
1 182 1 188 1 199 1 211 1 222 1 233 1 218 1 237 1 228 1 220
1 241 1 217 1 211 1 224 1 199 1 201 1 207 1 192 1 197 1 185
1 183 1 200 1 186 1 181 1 144 1 153 1 181 1 189 1 183 1 195
1 182 1 179 1 176 1 169 1 178 1 168 1 159 1 168 1 167 1 175
1 165 1 166 1 171 1 158 1 166 1 178 1 169 1 164 1 160 1 166
1 169 1 168 1 159 1 158 1 171 1 183 1 158 1 165 1 181 1 173
.....

The following lines exemplifies an intensity data file with the ESD format:

Tl2(Ba0.5Sr0.4)2Ca2Cu3Oy
BANK 1 3300 660 CONST 300.00 5.00 0 0 ESD

572. 39. 574. 39. 580. 39. 593. 39. 572. 39.
564. 38. 515. 37. 515. 37. 539. 38. 469. 35.
553. 38. 585. 39. 523. 37. 537. 38. 466. 35.
512. 37. 583. 39. 502. 36. 558. 38. 550. 38.
604. 40. 585. 39. 502. 36. 547. 38. 502. 36.
607. 40. 542. 38. 515. 37. 585. 39. 601. 40.
550. 38. 650. 41. 564. 38. 682. 42. 626. 41.
647. 41. 723. 44. 753. 45. 839. 47. 680. 42.
.....

17.4.9 HRPD format

Intensities measured on the neutron powder diffractometer HRPD at the JRR-3M reactor of the
Japan Atomic Energy Agency (JAEA) are recorded in two different types. Step widths are not
constant in both of them. Since RIETAN-FP automatically determines the type of the current
intensity data file, we need not specify it. Top lines in one of the two formats are as follows::

EXPNO = 460 RUNNO = 2
COMMAND = KS
DATE = 93/10/25 TIME = 17:13:18
COMMENT = NBS Si powder
WL = 0.0000
MONOCHRO NAME = MONOCHRO ANGLE = 89.000
COLLIMATOR = 0/ 0/ 0/ 0
D1 = 6.1524 D2 = 6.1524 GAMMA* = 90.000 PSI0 = 166.100
DSET FILE = DUA1:[USER.SHIMOJYO.HRPD]460D1.DST
S C = 117.280
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6.800 9.303 11.798 14.342 16.828 19.359 21.816 24.34
26.841 29.364 31.785 34.321 36.768 39.344 41.858 44.28
46.823 49.306 51.800 54.170 56.842 59.336 61.804 64.30
66.798 69.297 71.814 74.325 76.820 79.346 81.823 84.31
86.820 89.322 91.804 94.329 96.839 99.277 101.837 104.31

106.802 109.350 111.823 114.347 116.842 119.295 121.856 124.29
126.795 129.301 131.819 134.339 136.799 139.329 141.836 144.31
146.826 149.301 151.817 154.318 156.828 159.314 161.835 164.31

AXIS = S
SI = 5.000 DS = 0.050
NSTP = 50 PRSC = 16 PRST = 48000
DETN = ALL

17.4.10 Rigaku RINT 2000 ASCII format

Binary files of X-ray powder-diffraction data measured on diffractometers produced by Rigaku
Corporation can be converted into text files of this format. Inquire Rigaku for obtaining
information about a utility program for the file conversion.

17.4.11 MAC Science format

Binary files of X-ray powder-diffraction data measured on diffractometers produced by MAC
Science, whose business was acquired by Bruker AXS in 2002, can be converted into text files
of this format. The routine of reading files of this format was written by an employee of MAC
Science.

17.4.12 General-3 format

This is an extended version of the general format, containing standard uncertainties of observed
diffraction intensities as third data in the following way:

GENERAL
5751
15.00 609 24
15.02 612 25
15.04 673 26
15.06 619 25
15.08 627 25
15.10 609 25
15.12 549 23
15.14 635 25

....

This format was added in response to a request from Takashi Ida (Nagoya Institute of
Technology), who is my collaborator of research in structure refinement where the effect of
particle statistics on observed intensities is taken into account [218] (see Chap. 15).
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17.4.13 PANalytical XML format

This is a document written in the Extensible Markup Language (XML) to store X-ray powder
diffraction data measured on diffractometers of PANalytical B.V. (Spectris Co., Ltd.). After
data placed on parts of ‘.....’ in the following lines

<positions axis="2Theta" unit="deg">
<startPosition> ..... </startPosition>
<endPosition> ..... </endPosition>

</positions>
<positions axis="Omega" unit="deg">

<startPosition> ..... </startPosition>
<endPosition> ..... </endPosition>

</positions>
<positions axis="Phi" unit="deg">

<commonPosition> ..... </commonPosition>
</positions>
<commonCountingTime unit="seconds">48.195</commonCountingTime>
<intensities unit="counts"> ..... </intensities>

have been input by RIETAN-FP, the number of steps, the step width, and 2θ values are
calculated. X-Ray diffraction intensities are recorded in between <intensities unit="counts">

and </intensities> with counts separated by spaces. In hoge.int containing two or more such
blocks, intensities at the same 2θ’s are summed up. If intensities recorded in two or more files
need to be summed up, simply combine the files into a single file, hoge.int.

17.4.14 Substitution of smoothed intensities for zero intensities

Inclusion of zero intensities in hoge.int causes ‘division by zero’ errors when calculating wi in
Eq. (2.1), which leads to abnormal termination of RIETAN-FP. If a zero intensity is found in
hoge.int, RIETAN-FP substitutes yipsmoothedq smoothed by a box-car approach [235] for it:

yipsmoothedq “
w2yi´2 ` w1yi´1 ` w0yi ` w1yi`1 ` w2yi`2

2w2 ` 2w1 ` w0
. (17.1)

Because yi “ 0, w0 “ 1, w1 “ 0.5, and w2 “ 0.25, Eq. (17.1) reduces to

yipsmoothedq “ 0.1pyi´2 ` yi`2q ` 0.2pyi´1 ` yi`1q. (17.2)

17.5 File to Store Background Intensities

A file to input background intensities are required when NRANGE = 1´3.

17.5.1 NRANGE = 1

In this case, list-directed READ statement in RIETAN-FP is as follows:

READ(UNIT=8,*) (X(J),Y(J), J=1,100)
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where X(J) is the Jth 2θ value in degrees, and Y(J) is the background intensity, y1
bp2θiq, at X(J)

degrees. As is evident from the above READ statement, we can input up to 100 diffraction points
in free format. To indicate the end of data points, place ‘/’ after the last background intensity.

17.5.2 NRANGE = 2 and 3

hoge.bkg containing only a pair of data per line

When NRANGE = 2 or 3, the list-directed READ statement in RIETAN-FP is as follows:

DO J = 1, NP
READ(8, *, END = 3) DEG(J), BG(J)

END DO

where DEG(J) is the Jth 2θ value in degrees, and BG(J) is the background intensity, y1
bp2θiq,

at X(J) degrees, and NP is the maximum number of data points allowed in RIETAN-FP. The
2θ and background pairs whose total number should be equal to that of observed diffraction
intensities in hoge.int.

No background parameters (bj ; j = 0´11) should be refined when NRANGE = 2 because
background intensities are simply fixed at those recorded in hoge.bkg. Procedures for preparing
hoge.bkg used to calculate the composite background function (3.107) are described in detail in
ref. [105].

hoge.bkg created by RIETAN-FP

As described in 11.2, RIETAN-FP is capable of creating hoge.bkg storing background intensities
calculated according to the procedure of Sonneveld and Visser [106]. The resulting hoge.bkg file
has an Igor text format where 2θi, yi, and y1

bp2θiq are recorded as waves twotheta, intensity,
background in the following way:

IGOR
WAVES/O twotheta, intensity, background
BEGIN

4.0000 735.000 735.000
4.0100 746.000 736.295
4.0200 737.000 737.544
4.0300 755.000 738.749
4.0400 754.000 739.912
.....

END

Instructions to plot observed and background intensities against 2θ are included after END in
hoge.bkg output by RIETAN-FP. Thus, hoge.bkg can be used to see diffraction patterns together
with estimated background intensities.
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17.6 File to Impose Restraints on Geometrical Parameters

17.6.1 Visualization of bonds and bond angles

VESTA [1,25,26] is very convenient to visualize bonds and bond angles recorded in hoge.ffe to
impose restraints on bond lengths and angles. When reading in hoge.lst and/or hoge.ins, VESTA
also input hoge.ffe automatically provided that hoge.ffe shares the same folder with hoge.lst
and/or hoge.ins. Otherwise, hoge.ffe can be input by pressing the “Read hoge.ffe” button in the
“Geometrical Parameters” dialog box, which lists interatomic distances and bond angles recorded
in hoge.ffe.

VESTA allows us to locate the bonds and bond angles displayed in the “Geometrical
Parameters” dialog box on a graphic window [236]; this dialog box appears when the Geometrical
Parameters item is selected under the Utilities menu. On selection of a bond (2 atoms) or a
bond angle (3 atoms) in this dialog box, the corresponding object in a ball-and-stick model is
selected (highlighted), and vice versa. Thus, atom pairs and triplets associated with geometrical
parameters on which restraints are imposed in Rietveld analysis with RIETAN-FP are easily
recognized in the ball and stick model. P´O3 bond selected in the dialog box is highlighted.
Figure 17.1 exemplifies visualization of a bond in a ball and stick model of fluorapatite; in the
structural model in the graphic window.

Figure 17.1: The “Geometrical Parameters” dialog box showing a list of
bonds recorded for fluorapatite in Fapatite.ffe
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Because ORFFE [136] calculates standard uncertainties (s.u.’s) of geometrical parameters
with both diagonal and off-diagonal terms in the variance-covariance matrix, the resulting values
of e.s.d.’s are more accurate than those evaluated by VESTA using only the diagonal terms.

17.6.2 Visualization of atoms

There is another additional feature to locate each atom in a ball and stick model. VESTA lists
the fractional coordinates of all the atoms displayed in the graphic window in the “Vectors”
dialog box that appears when selecting the Vectors item under the Edit menu. Selecting an atom
in this dialog box, we can also select (highlight) the corresponding object in the Graphic window,
and vice versa.

17.7 Files to Plot Results of Pattern Fitting and Simulation

RIETAN-FP has an option to output text files to plot results of pattern fitting and simulation in
three formats: gnuplot [63], Igor Pro, and RietPlot 2000. Graphing results of Rietveld analysis is
particularly effective in understanding of the reason why the current Rietveld analysis does not
proceed smoothly. With RIETAN-FP, simulation of a powder diffraction pattern is possible only
for a single-phase sample.

17.7.1 Gnuplot

Creation of PDF files in a batch mode

Gnuplot (NPAT = 1) is strongly recommended as a graphing tool if cross-platform free software
is preferred to commercial one such as Igor Pro (see 17.7.2). Gnuplot is a command-driven
interactive plotting utility for all the major operating systems [63] and available for download
with its source code via its Web site.7 Detailed Japanese information about gnuplot is presented,
for example, at the Web sites of Kawano,8 Yonezawa9, and Sugita.10 To avoid the trouble of
having to install gnuplot further, the distribution file of the RIETAN-FP–VENUS systems for
Windows includes gnuplot under the RIETAN_VENUS folder. On the other hand, gnuplot for
macOS has to be installed by the user with an installer built by Allin Cottrell.11

Gnuplot is excellent in multiple functions, the support of many output formats,12 full
documentation, and continual upgrades. However, interactive operation where commands are
input in the command line is rather troublesome and far from user-friendly for its beginners; we
tend to forget how to use a variety of commands as time goes on. The batch mode in gnuplot
is, therefore, used in RIETAN-FP in combination with the RIETAN-FP–VENUS assistance
environment (see Sect. 11.3 of Ref. [63]). In other words, gnuplot is used as a graphing engine
launched by a gnuplot command in a batch file (Windows) or a bash script (macOS).

7http://www.gnuplot.info/
8http://folk.uio.no/hpl/scripting/doc/gnuplot/Kawano/
9http://www.ss.scphys.kyoto-u.ac.jp/person/yonezawa/contents/program/gnuplot/

10http://www.gnuplot-cmd.com/
11http://ricardo.ecn.wfu.edu/pub/gnuplot/
12Referred to as “terminals” in gnuplot.
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When NPAT is set at 1 in hoge.ins, RIETAN-FP creates a pair of text files, hoge.plt and
hoge.gpd, after pattern fitting (Rietveld analysis, pattern decomposition, MEM-based pattern
fitting, etc.) or simulation of a powder diffraction pattern. Commands to plot graphs from
numerical data in hoge.gpd are described in the gnuplot script file, hoge.plt, outputting graphic
data automatically after running gnuplot in a batch mode. In other words, the two files enable
us to display the graph on the screen without entering any commands in the command line of
gnuplot.

From the large number of graphic formats supported by gnuplot, the Portable Document
Format (PDF) defined by Adobe was selected to display professional-quality images on the screen
and export them to other applications such as Adobe Illustrator, Microsoft Office, and LATEX. A
PDF file is a self-contained cross-platform document containing vector data. With PDF files
attached with an extension of pdf, documents can be represented in a manner independent of
application software, hardware, and operating system without any degradation of vector graphics.
In addition, many PDF viewers are distributed free of charge over the internet.

Gnuplot script file, hoge.plt

An example of a gnuplot script file, Fapatite.plt, to create a graph from results of Rietveld
analysis from X-ray powder diffraction data of fluorapatite (included in the distribution files of
the RIETAN-FP–VENUS packages) with gnuplot will be listed below to instruct how to modify
it:

# LPS = 0: Plot no axis for lattice-plane spacings
# LPS = 1: Plot an axis for lattice-plane spacings
LPS = 1

WIDTH = 24.5 # Width/cm of the graph
HEIGHT = 13.0 # Height/cm of the graph

XMIN = 10.0 # Minimum value for the x axis
XMAX = 110.0 # Maximum value for the x axis

YMIN = -4000 # Minimum value for the y axis
YMAX = 45000 # Maximum value for the y axis
YINC = 10000 # Increment for ticks on the y axis

IVSIZE = 15 # Size of numerical values for the x and y axes
ILSIZE = 17 # Size of labels for the x and y axes
SYLBL = -1.5 # Shift of the y label (Intensity) along the x axis in the unit of a character

PSIZE = 0.35 # Size of '+' marks representing observed intensities
TSIZE = 0.90 # Length (in percent of the y-axis length) of tick marks to show peak positions

OFFSETD = -900 # Offset for the residual curve

OFFSET1 = 4200 # Offset for tick marks (peak positions) for phase No. 1
OFFSET2 = 3100 # Offset for tick marks (peak positions) for phase No. 2
OFFSET3 = 2000 # Offset for tick marks (peak positions) for phase No. 3
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DLW = 1.1 # Default linewidth
BLW = 1.1 # linewidth of graph borders

set border linewidth BLW
set tics scale 1.7, 0.9

LEN_BAR = 0.01*TSIZE*(YMAX-YMIN)
set bars 0

set terminal pdfcairo linewidth DLW size WIDTH/2.54, HEIGHT/2.54 fontscale 0.75

ITSIZE = ILSIZE + 2
set title "A mixture of Cu_3Fe_4(PO_4)_6, Cu_3(PO_4)_2, and Cu_2P_2O_7" font ",".ITSIZE

set label 1 at graph 0.8500, 0.92 "{/:Italic R}_{wp} = 1.50 %" font ", 17"
set label 2 at graph 0.8622, 0.84 "{/:Italic R}_p = 1.19 %" font ", 17"
set label 3 at graph 0.8608, 0.76 "{/:Italice R}_B = 4.28 %" font ", 17"
set label 4 at graph 0.8577, 0.68 "{/:Italic R_F}&{/=30 |}= 3.86 %" font ", 17"

set ytics mirror offset 0.4, 0.22 font ",".IVSIZE 0, YINC
set mytics 2 # The number of sub-intervals between major tics
set ylabel "Intensity" offset SYLBL, 0 font ",".ILSIZE

set mxtics 5 # The number of sub-intervals between major tics
set xlabel "2{/:Italic \316\270}&{/=15 |}/&{/=15 |}\302\260" offset 0, -0.1 font ",".ILSIZE

if ( LPS == 0 ) {
set xtics mirror offset -0.22, 0.3 10 font ",".IVSIZE # increment = 10

} else {
set xtics nomirror offset -0.22, 0.3 10 font ",".IVSIZE # increment = 10

lambda = 1.540593
set angles degrees
set x2tics offset -0.31, 0.1 autofreq font ",".IVSIZE
set link x2 via 0.5*lambda/sin(0.5*x) inverse 2.0*asin(0.5*lambda/x)
set mx2tics 10 # The number of sub-intervals between major tics
set x2label "{/:Italic d}&{/=14 |}/&{/=10 |}\342\204\253" offset 0, -0.4 font ",".ILSIZE

}

# Margins measured in character widths or heights (a negative value: automatic)
set margins -1, -1, 4, -1 # <left>, <right>, <bottom>, <top>

plot [XMIN:XMAX] [YMIN:YMAX] "Cu3Fe4P6.gpd" \
every :::0::0 using 1:($3) notitle with lines linetype 11 linecolor rgbcolor "cyan", \

'' every :::0::0 using 1:2 notitle with points pointtype 1 pointsize PSIZE \
linecolor rgbcolor "red", \

'' every :::1::1 using 4:(OFFSET1):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \
linecolor rgbcolor "forest-green", \

'' every :::2::2 using 4:(OFFSET2):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \
linecolor rgbcolor "forest-green", \

'' every :::3::3 using 4:(OFFSET3):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \
linecolor rgbcolor "forest-green", \

'' every :::0::0 using 1:($4+OFFSETD) notitle with lines linetype 3 linecolor rgbcolor "blue"
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In hoge.plt, strings following ‘#’ are regarded as comments in just the same manner as in
hoge.ins. If ‘#’ at the top of a line is deleted, the command is executed when replotting the
graph. For example, removing ‘#’ in

#set mytics 5 # The number of sub-intervals between major tics

puts four minor tics between two major ones in the y axis.
Changing ‘LPS = 0’ in the third line into ‘LPS = 1’ adds tics of lattice-plane spacings, d, on

the x2 axis (see Fig. 17.3), which is understandable by reading the part of a if ..... else

block.
In the plot command divided into 8 lines, ‘every :::n::n’ (n = 0 or 1) means that data in

block n are plotted. A backslash, ‘\’, placed at the tail of a line denotes continuation of the line.
Be careful not to input any spaces after ‘z’ (backslash).

Setting INDREF at 1 in hoge.ins gives the following two lines

'' every :::0::0 using 1:($4+OFFSETD) notitle with lines linetype 3 linecolor rgbcolor "blue", \
'' every :::2::2 using 1:($2) notitle with lines linetype 11 linecolor rgbcolor "steelblue"

in place of

'' every :::0::0 using 1:($4+OFFSETD) notitle with lines linetype 3 linecolor rgbcolor "blue"

to plot individual profile intensities of all the reflections, which disappears by commenting out
the last line and removing ‘, \’ preceding it:

'' every :::0::0 using 1:($4+OFFSETD) notitle with lines linetype 3 linecolor rgbcolor "blue"
#'' every :::2::2 using 1:($2) notitle with lines linetype 11 linecolor rgbcolor "steelblue"

However, the same graph is plotted even if ‘, \’ remains.
The latter half of hoge.plt consists of commands, which are commented out, to draw a

Williamson–Hall (WH) or Halder–Wagner (HW) plot (see Chap. 13). With an MSCS macro of
the RIETAN-FP–VENUS assistance environment, only the part of these commands is extracted
and uncommented to give hoge-mscs.plot, which is then input by gnuplot to display the WH or
HW plot. To modify settings for the plot, not hoge-mscs.plot but the above comment lines in
hoge.plt must be edited prior to execution of MSCS.

Procedures to plot and view graphs on the assistance environment

The RIETAN-FP–VENUS assistance environment (see Chap. 16) is used to create a PDF file,
display a graph, and modify it according to the following procedures (Fig. 17.2):

1. After clicking a [Plot] button (Windows) or selecting a [Plot] item (macOS), gnuplot directly
generates a PDF file, hoge.pdf, from hoge.plt and hoge.gpd in the batch mode.

2. A PDF viewer associated with the extension, pdf, automatically inputs hoge.pdf to display
a graph on the screen.

3. The script file, hoge.plt, is opened by Hidemaru Editor for Windows or Jedit X for macOS
to make it possible to edit it for replotting.
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Rietveld analysis
Le Bail analysis
MEM-based pattern fitting

RIETAN-FP
gnuplot

Pattern fitting

Simulation of powder
diffraction patterns

Gnuplot script file: *.plt
Gnuplot data file: *.gpd

Graph making

PDF file: *.pdf

Figure 17.2: Procedures for creating a PDF file storing a graph
resulting from pattern fitting or simulation of a powder diffraction
pattern

4. Browsing and magnifying this graph, we can easily determine appropriate setting values in
hoge.plt. Modification of hoge.plt with the editor and replotting graphs with gnuplot are
alternately repeated until a satisfactory graph is obtained. New commands and keywords
may be freely added in hoge.plt if desired.

As described above, plotting graphs with gnuplot presupposes the use of the RIETAN-FP–
VENUS assistance environment based on Hidemaru Editor (Windows) or Jedit X (macOS).
Commands need not be entered in the gnuplot window; only pressing the button or the shortcut
leads to the immediate appearance of a graph reflecting the content of hoge.plt. Selection of
[Plot] in pulldown and popup menus is also possible with a mouse. Thus, those who are not
very familiar with the operation of gnuplot can easily look desired graphs for demonstration and
publishing.

Free PDF viewers called Sumatra PDF for Windows and Preview, which is an macOS’s
application, are more suitable than Adobe Reader. Both of them are more lightweight than
Adobe Reader and never lock any PDF file, allowing to input a new PDF file with the same
name and display its content in the same window or another one. In the case of Sumatra PDF, a
setting

ReuseInstance = false

in SumatraPDF-setting.txt,13 must be changed as

ReuseInstance = true

to let a single application of Sumatra PDF to display PDF files successively.
13http://blog.kowalczyk.info/software/sumatrapdf/settings.html
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Various commands used in hoge.plt

The destination, ‘pdfcairo’, of the graphic data generated by gnuplot is specified in the
set terminal command:

set terminal pdfcairo linewidth DLW size WIDTH/2.54, HEIGHT/2.54 fontscale 0.75

The graphing backend of terminal pdfcairo specified in hoge.plt takes full advantage of contem-
porary features of a single set of libraries for graphics and text rendering to produce high-quality
graphs through the use of over-sampling, anti-aliasing, and so on (p. 14 in Ref. [63]). Terminal
pdfcairo has the benefit of outputting PDF files where empty spaces aroung the graph are
automatically cropped, which is very convenient when including the resulting PDF files in
documents of LATEX, Microsoft Word, Pages, Adobe Illustrator, Microsoft PowerPoint, Keynote,
etc. Because no font option is given here, the default font, sans, is used, which enhances the
visual clarity of a graph (see p. 312 in Ref. [63]). Using option fontscale, we can adjust the
font size separately relative to the current one with a default value of 0.5 (See pp. 220–221 in
Ref. [63]).

In the above script file, values of user-defined variables in lines from

WIDTH = 24.5 # Width/cm of the graph"

to

OFFSET1 = -700 # Offset for tick marks (peak positions) for phase No. 1"

are taken from corresponding data specified in Fapatite.ins except for SYLBL. In general, it is
only necessary to check observed and calculated intensities to give proper settings. Contents of
the variables are self-evident because of comments after numerical numbers.

In two lines,

DLW = 1.1 # Default linewidth
BLW = 1.1 # Linewidth of graph borders

following the above ones, the two kinds of line widths are continuously specified. The values of
WIDTH, HEIGHT, XMIN, XMAX, YMIN, YMAX, YINC, IVSIZE, ILSIZE, PSIZE, TSIZE, OFFSETD, OFFSETn
(n: phase number), DLW, and BLW after ‘=’ may be changed to modify the appearance of the graph
as needed. it should be remembered that graph borders are determined from not only BLW but
also DLW.

The margin, which is the distance between the plot border and the outer edge of the canvas,
is chosen automatically, but can be overridden by the set margins commands, e.g.,

set margins -1, -1, 4, -1 # <left>, <right>, <bottom>, <top>

where a negative value of -1 causes gnuplot to revert to the computed value. If parts of labels
and titles are lacking, please change each -1 into an appropriate value in a character unit.

The first line of the plot command includes the name of the numerical data file, Fapatite.gpd:

plot [XMIN:XMAX] [YMIN:YMAX] "Fapatite.gpd" \
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Of course, the lines of the plot command may be modified as required. For example, colors of
lines, points, and bars can be changed easily. The following color names as many as 111 are
predefined together with their hexadecimal numbers in gnuplot:

white #ffffff = 255 255 255
black #000000 = 0 0 0
dark-grey #a0a0a0 = 160 160 160
red #ff0000 = 255 0 0
web-green #00c000 = 0 192 0
web-blue #0080ff = 0 128 255
dark-magenta #c000ff = 192 0 255
dark-cyan #00eeee = 0 238 238
dark-orange #c04000 = 192 64 0
dark-yellow #c8c800 = 200 200 0
royalblue #4169e1 = 65 105 225
goldenrod #ffc020 = 255 192 32
dark-spring-green #008040 = 0 128 64
purple #c080ff = 192 128 255
steelblue #306080 = 48 96 128
dark-red #8b0000 = 139 0 0
dark-chartreuse #408000 = 64 128 0
orchid #ff80ff = 255 128 255
aquamarine #7fffd4 = 127 255 212
brown #a52a2a = 165 42 42
yellow #ffff00 = 255 255 0
turquoise #40e0d0 = 64 224 208
grey0 #000000 = 0 0 0
grey10 #1a1a1a = 26 26 26
grey20 #333333 = 51 51 51
grey30 #4d4d4d = 77 77 77
grey40 #666666 = 102 102 102
grey50 #7f7f7f = 127 127 127
grey60 #999999 = 153 153 153
grey70 #b3b3b3 = 179 179 179
grey #c0c0c0 = 192 192 192
grey80 #cccccc = 204 204 204
grey90 #e5e5e5 = 229 229 229
grey100 #ffffff = 255 255 255
light-red #f03232 = 240 50 50
light-green #90ee90 = 144 238 144
light-blue #add8e6 = 173 216 230
light-magenta #f055f0 = 240 85 240
light-cyan #e0ffff = 224 255 255
light-goldenrod #eedd82 = 238 221 130
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light-pink #ffb6c1 = 255 182 193
light-turquoise #afeeee = 175 238 238
gold #ffd700 = 255 215 0
green #00ff00 = 0 255 0
dark-green #006400 = 0 100 0
spring-green #00ff7f = 0 255 127
forest-green #228b22 = 34 139 34
sea-green #2e8b57 = 46 139 87
blue #0000ff = 0 0 255
dark-blue #00008b = 0 0 139
midnight-blue #191970 = 25 25 112
navy #000080 = 0 0 128
medium-blue #0000cd = 0 0 205
skyblue #87ceeb = 135 206 235
cyan #00ffff = 0 255 255
magenta #ff00ff = 255 0 255
dark-turquoise #00ced1 = 0 206 209
dark-pink #ff1493 = 255 20 147
coral #ff7f50 = 255 127 80
light-coral #f08080 = 240 128 128
orange-red #ff4500 = 255 69 0
salmon #fa8072 = 250 128 114
dark-salmon #e9967a = 233 150 122
khaki #f0e68c = 240 230 140
dark-khaki #bdb76b = 189 183 107
dark-goldenrod #b8860b = 184 134 11
beige #f5f5dc = 245 245 220
olive #a08020 = 160 128 32
orange #ffa500 = 255 165 0
violet #ee82ee = 238 130 238
dark-violet #9400d3 = 148 0 211
plum #dda0dd = 221 160 221
dark-plum #905040 = 144 80 64
dark-olivegreen #556b2f = 85 107 47
orangered4 #801400 = 128 20 0
brown4 #801414 = 128 20 20
sienna4 #804014 = 128 64 20
orchid4 #804080 = 128 64 128
mediumpurple3 #8060c0 = 128 96 192
slateblue1 #8060ff = 128 96 255
yellow4 #808000 = 128 128 0
sienna1 #ff8040 = 255 128 64
tan1 #ffa040 = 255 160 64
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sandybrown #ffa060 = 255 160 96
light-salmon #ffa070 = 255 160 112
pink #ffc0c0 = 255 192 192
khaki1 #ffff80 = 255 255 128
lemonchiffon #ffffc0 = 255 255 192
bisque #cdb79e = 205 183 158
honeydew #f0fff0 = 240 255 240
slategrey #a0b6cd = 160 182 205
seagreen #c1ffc1 = 193 255 193
antiquewhite #cdc0b0 = 205 192 176
chartreuse #7cff40 = 124 255 64
greenyellow #a0ff20 = 160 255 32
gray #bebebe = 190 190 190
light-gray #d3d3d3 = 211 211 211
light-grey #d3d3d3 = 211 211 211
ark-gray #a0a0a0 = 160 160 160
slategray #a0b6cd = 160 182 205
gray0 #000000 = 0 0 0
gray10 #1a1a1a = 26 26 26
gray20 #333333 = 51 51 51
gray30 #4d4d4d = 77 77 77
gray40 #666666 = 102 102 102
gray50 #7f7f7f = 127 127 127
gray60 #999999 = 153 153 153
gray70 #b3b3b3 = 179 179 179
gray80 #cccccc = 204 204 204
gray90 #e5e5e5 = 229 229 229
gray100 #ffffff = 255 255 255

The above data can be displayed by inputting

gnuplot> set terminal pdfcairo
gnuplot> show colors

in command lines of gnuplot. The above colors are displayed in a Web page of Yonezawa.14

Replotting the graph after uncommenting the set title command

#set title "Rietveld analysis of fluorapatite, Ca_5F(PO_4)_3" font ",".ITSIZE

by deleting the top character, ‘#’, puts a title above the graph:

Rietveld analysis of fluorapatite, Ca5F(PO4)3

The title was imput as the first data in hoge.ins. Further, if the four comment lines
14http://www.ss.scphys.kyoto-u.ac.jp/person/yonezawa/contents/program/gnuplot/colorname_list.html

181

http://www.ss.scphys.kyoto-u.ac.jp/person/yonezawa/contents/program/gnuplot/colorname_list.html


CHAPTER 17. INPUT AND OUTPUT FILES

#set label 1 at graph 0.8500, 0.92 "{/:Italic R}_{wp} = 8.21 %" font ", 17"
#set label 2 at graph 0.8622, 0.84 "{/:Italic R}_p = 1.19 %" font ", 17"
#set label 3 at graph 0.8608, 0.76 "{/:Italice R}_B = 4.28 %" font ", 17"
#set label 4 at graph 0.8577, 0.68 "{/:Italic R_F}&{/=30 |}= 3.86 %" font ", 17"

are uncommented, four reliability indices

Rwp = 8.21%

Rp = 6.39%

RB = 3.78%

RF = 1.92%

appear at a right upper part of Rietveld-refinement patterns. These four were obtained after
convergence was reached in the Rietveld analysis. Note that RB and RF are output for only the
first phase.

In the set title set label commands, which are commented out in the above list, _
denotes subscripts. On the other hand, superscripts are represented by ‘^’. If the number of
subscripts or superscripts is larger than unity, they should be enclosed by a pair of ‘{’ and ‘}’, e.g.,
‘C_{117}H_{200}N_{32}O_{59}P_4’, ‘Ca^{2+}’ and ‘^{90}Sr’. Parts of characters in titles and
labels are made italic with {/:Italic .....} as exemplified in the above set label commands.
A Greece character can be output using its octal code, e.g., θ: "{/:Italic \316\270}" (normal)
and θ: {\316\270}.15 Narrow spaces can be conveniently inserted with ‘&{/=ps |}| (ps: font
size), e.g., abc&{\10 |}def, where | is used as a typical character whose width is very small.

To learn details in commands used in hoge.plt as well as other ones, the manual of gnuplot
5.X16 should be consulted. GUI front-end applications may also input and edit hoge.plt to change
various settings of graphs.

An example of plotting Rietveld-refinement patterns for a multi-phase sample

The number of lines for the plot command, where a new line is started by putting ‘\’ at
end-of-line, increases with increasing number of phases because y coordinates of short vertical
bars representing peak positions, 2θK , are different from phase to phase. For example, in the
case of Rietveld analysis from X-ray powder diffraction data of a mixture of Cu3Fe4(PO4)6,
Cu3(PO4)2, and Cu2P2O7,17 the plot command is as listed below:

plot [XMIN:XMAX] [YMIN:YMAX] "Cu3Fe4P6.gpd" \
every :::0::0 using 1:($3) notitle with lines linetype 11 linecolor rgbcolor "cyan", \

'' every :::0::0 using 1:2 notitle with points pointtype 1 pointsize PSIZE \
linecolor rgbcolor "red", \

'' every :::1::1 using 4:(OFFSET1):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \
linecolor rgbcolor "forest-green", \

'' every :::2::2 using 4:(OFFSET2):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \

15http://blog.fujioizumi.verse.jp/?eid=311
16A manual translated into Japanese is distributed at the Web site of the Takeno laboratory of Niigata Institute

of Technology: http://takeno.iee.niit.ac.jp/~foo/gp-jman/gp-jman.html
17Cu3Fe4P6 included in the distribution files of RIETAN-FP–VENUS package.
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linecolor rgbcolor "forest-green", \
'' every :::3::3 using 4:(OFFSET3):(LEN_BAR) notitle with yerrorbars linetype 4 pointtype 0 \

linecolor rgbcolor "forest-green", \
'' every :::0::0 using 1:($4+OFFSETD) notitle with lines linetype 3 linecolor rgbcolor "blue"

In the plot command, ‘every :::n::n’ (n = 1–3) specifies block numbers of peak positions,
2θK , for the three phases in Cu3Fe4P6.gpd, which is specified in the first line. Values of offsets,
OFFSET1, OFFSET2, and OFFSET3, for tick marks (2θK) along the y axis, whose initial values were
input in hoge.ins, were optimized by trial and error.

Figure 17.3 illustrates Rietveld-refinement patterns resulting from X-ray powder diffraction
data of the above three-phase sample. This figure has a title containing subscripts above the
graph and an inset of four reliability indices, which were output by set title and set label

commands in hoge.plt, respectively. Sub-intervals between major tics were set at 5 for the x axis
and 2 for the y axis:

set mxtics 5 # The number of sub-intervals between major tics
.....
set mytics 2 # The number of sub-intervals between major tics

The starting major tick was set at 10000:

set ytics mirror offset 0.6, 0 font ",".IVSIZE 10000, YINC

Note that the font size of characters for the title is defined as

ITSIZE = ILSIZE + 2
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A mixture of Cu3Fe4(PO4)6, Cu3(PO4)2, and Cu2P2O7
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Figure 17.3: Observed, calculated, and difference patterns obtained in the Rietveld analysis
from X-ray powder diffraction data of the mixture of Cu3Fe4(PO4)6, Cu3(PO4)2, and Cu2P2O7.
Pay attention to the addition of an upper horizontal axis.
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Of course, the increment, ‘+ 2’, in this line may be changed as you like.

Gnuplot data file, hoge.gpd

In hoge.gpd resulting from pattern fitting, data are divided into two or more blocks, separated
by a blank line plus a comment line. For example, Fapatite.gpd consists of two blocks:

# 2-theta, observed intensity, calculated intensity, residual, background
1.50000E+1 6.09000E+2 6.15140E+2 -6.13977E+0 6.15140E+2
1.50200E+1 6.12000E+2 6.14135E+2 -2.13519E+0 6.14135E+2
.....
1.29980E+2 8.40000E+1 8.37117E+1 2.88254E-1 7.13560E+1
1.30000E+2 8.40000E+1 8.29299E+1 1.07008E+0 7.14041E+1

# h, k, l, 2-theta (shifted), 2-theta (not shifted), d, sin(theta),
# FWHM*cos(theta), and beta*cos(theta) for phase No. 1

1 0 1 16.826 16.877 5.2492 0.146746 0.00128500 0.00171137
1 0 1 16.868 16.919 5.2492 NaN NaN NaN
1 1 0 18.878 18.929 4.6845 0.164435 0.00128176 0.00170951
1 1 0 18.925 18.976 4.6845 NaN NaN NaN

.....

For convenience, a comment line for the second block were divied into two parts here. Thanks to
the comment lines, the content of this file will be self-explanatory. The meaning of ‘residual’ is
explicitly explained in the following lines in hoge.ins:

LRES = 0: Plot Delta_y = (observed intensity - calculated intensity).
LRES = 1! Plot Delta_y/(standard deviation).
LRES = 2! Plot [Delta_y/(observed intensity)]/(standard deviation).*
# * Refer to Eq. (1.13) in R. A. Young, "The Rietveld Method," p. 24.

In the second block, sin θ and β cos θ are used to draw Williamson–Hall and Halder–Wagner
plots (see 13.4.3). ‘NaN’s are given to sin θ and β cos θ of CuKα2 reflections because none of
them need to be plotted in the graph.

In multi-phase samples, hkl, 2θ (shifted), 2θ (not shifted), and d of phase No. 2, 3, ..... follow
those of phase No. 1 with a blank line plus a comment line between data lines for two phases.
The total number of blocks is equal to (the number of phases)+1. The first block is block 0,
which is followed by blocks 1, 2, 3, ..... while the first point in each block is point 0, which is
followed by points 1, 2, 3, ..... In each keywords in the plot command, start and end blocks,
which are equal to each other, are specified to input data in the block.

If INDREF is set at 1 in hoge.ins, lines to plot individual profile intensities are appended. For
example, in the case of Fapatite.gpd,

# xrefl, yrefl, ynet, phase, h, k, l, code, and m
16.120 5.63006E+02 1.89397E+00 1 1 0 1 1 12
16.140 5.62194E+02 2.00542E+00 1 1 0 1 1 12
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16.160 5.61394E+02 2.12701E+00 1 1 0 1 1 12
16.180 5.60606E+02 2.25997E+00 1 1 0 1 1 12
.....

where xrefl, yrefl, and ynet are, respectively, 2θ, the individual profile intensity, and the net
intensity of the 101 reflection (code = 1: CuKα1 radiation) with a multiplicity, m, of 12 for
fluorapatite (phase 1).

On simulation of a powder diffraction pattern (NMODE = 1), hoge.gpd is output in a similar
format with two blocks.

17.7.2 Igor Pro

A powerful commercial program, Igor Pro, is also suitable for plotting Rietveld-analysis and
simulated patterns. Both Windows and macOS versions are available.

Advantages of Igor Pro over self-made plotting utilities are its high capabilities including

1. a programming language,

2. exporting files with several different formats,

3. page layouts.

Unfortunately, Igor Pro lacks one of the most important features of programs for scientists and
engineers: free of charge. Part of users may complaint of not possessing an enough budget to
buy it. However, WaveMetrics extends academic pricing to students and teachers. In the case
of on-line ordering, WaveMetrics further permits students with limited financial resources to
purchase Igor Pro at an unbelievably cheap price of $85.

Igor Pro for Linux is not sold. However, virtualization software such as VMware makes it
possible to run Igor Pro for Windows on Linux machines.

File hoge.itx with the Igor text format is obtainable when NPAT is set at 2 in hoge.ins. It
can be input by Igor Pro directly when its icon is double-clicked. Then, Igor Pro plots data
automatically thanks to a series of commands recorded by RIETAN-FP at the end of hoge.itx,
as exemplified below:

WAVES/O xppp_1, x0ppp_1, yppp_1
BEGIN
END
X Display ycal,delta vs twoth
X AppendToGraph yobs vs twoth
X SetAxis bottom 15.00, 130.00
X SetAxis left -2500, 20000
X AppendToGraph yphase_1 vs xphase_1
X AppendToGraph yppp_1 vs xppp_1
.....

Various parameters included in these commands are input by the user in hoge.ins. Figure 2.1
was plotted with Igor Pro from file hoge.itx output by RIETAN-FP.

185



CHAPTER 17. INPUT AND OUTPUT FILES

If hoge.plt created by gnuplot shares the same folder with hoge.itx, hoge.plt is preferentially
opened by clicking the [Plot] button (Windows) or pressing the shortcut for [Graph] (macOS) in
the RIETAN-FP–VENUS assistance environment (see 17.7.1). Accordingly, hoge.plt has to be
absent when wanting to plot data in hoge.itx in the same folder.

If INDREF is set at 1 in hoge.ins, the net intensity of each reflection is output to wave ynet as
follows:

WAVES/O xrefl, yrefl, ynet, phase, h, k, l, code, m
BEGIN
15.000 6.15390E+2 2.87933E-1 1 1 0 1 1 12
15.020 6.14392E+2 2.94340E-1 1 1 0 1 1 12
15.040 6.13397E+2 3.00963E-1 1 1 0 1 1 12
15.060 6.12403E+2 3.07812E-1 1 1 0 1 1 12
15.080 6.11411E+2 3.14897E-1 1 1 0 1 1 12
.....

Waves xrefl, yrefl, phase, h, k, l, code, and m are 2θ, the intensity of each reflection (= net
intensity + background), phase number, h, k, l, code number (= 1 for monochromatic beams or
Kα1 radiation; = 2 for Kα2 radiation), and multiplicity, respectively. For convenience, the same
values are redundantly output for phase, h, k, l, code, and m, as listed above. They are used in
the original structure-refinement method, which was developed in collaboration with Takashi
Ida of Nagoya Institute of Technology, taking into account particle statistics in X-ray powder
diffraction [218] (see Chap. 15). Diffraction profiles of each reflection are separated by a line
showing the end of a series of data:

NaN NaN NaN NaN NaN NaN NaN NaN NaN

In the simulation mode (NMODE = 1), powder diffraction patterns of multi-phase samples can
be plotted with Igor Pro. However, short vertical bars, which show positions of Bragg reflections,
of all the phases are mixed together in this case.

17.7.3 WinPLOTR

WinPLOTR [107] has a feature to input hoge.int (NINT = 1, 2, 5–7, 11, and 12) in addition
to hoge.itx. Unfortunately, neither background intensities nor the profile of each reflection
can be plotted with WinPLOTR. After inputting hoge.int, WinPLOTR is able to estimate
discrete background intensities to create hoge.bgr, which is, in turn, converted into hoge.bkg
by RIETAN-FP (see 3.12.3). WinPLOTR is also useful in precessing diffraction data for peak
search, removal of Kα2 profiles, and indexing.

17.7.4 RietPlot 2000

This is a Windows application written in Visual Basic by Naoki Ohashi of National Institute for
Materials Science. It is distributed free of charge for noncommercial use.18

18Information on RietPlot 2000 is obtainable at http://www.nims.go.jp/rietplot/
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17.7.5 RIETVIEW

RIETVIEW is a program written by Dr. Hell for Windows and briefly introduced in ref. [105]. It
is recommended for routine use because of its high-speed capability. RIETVIEW is available for
download at the Web site of Dr. Hell.19

17.7.6 Patmill

PatMill written by Zentaro Akase of Tohoku University for Windows requires ActivePerl and
Drop on Script in addition to gnuplot included in the RIETAN-FP package. It also runs just
fine under Linux. PatMill is available for download at Akase’s Web page.20

17.7.7 Other programs

Some programs other than the above three are currently distributed on the Web: MYPLOT,
PlotRietRefPat (using program pro Fit of QuantumSoft), PowderPlot, and RietPlot (different
from RietPlot 2000 described above).

17.8 Standard Output File

17.8.1 Dispersion corrections calculated by RIETAN-FP

When NPRINT is set at 2 in hoge.ins, detailed information on the calculation of f 1 and f2 is
output to hoge.lst. For example, in the case of Cimetidine.ins included in the distribution files,
Cimetidine.lst contains the following lines near its top part:

Dispersion corrections calculated for synchrotron X rays at lambda = 1.52904 Angstroms (E = 8.10863 keV)
f' + f(NT) = f1 + f(rel) - Z + f(NT) will be used as f' for elements listed below.
If f1 + f(rel) - Z is preferred to f1 + f(rel) - Z + f(NT), input the former in hoge.ins by yourself.

No. Atom f1 f(rel) Z f(NT) f' f'+f(NT) f''
1 C 6.01891 -1.800000E-3 6 -1.644200E-3 1.710939E-2 1.546519E-2 9.441026E-3
2 N 7.03208 -3.000000E-3 7 -1.919100E-3 2.908278E-2 2.716368E-2 1.806140E-2
3 S 16.3328 -2.100000E-2 16 -4.380400E-3 0.311846 0.307465 0.542838

As suggested in the third line, f 1 may be input in hoge.ins instead of f 1 ` fNT.
The output of such a detailed table to hoge.lst enables us to utilize RIETAN-FP as a tool for

obtaining f1, frel, fNT, f 1, f 1 ` fNT, and f2 at an arbitrary wavelength.

17.8.2 Variables output during least-squares fitting

The following variables are output during least-squares fitting.

OF: Weighted sum of squares, Spxq, calculated with Eq. (2.1).
AOF: Augmented objective function, F pxq, calculated with Eq. (5.2); output only when

imposing restraints.
PF: Sum of two penalty terms in Eq. (5.2).

NPTS: Number of data points to be analyzed.
19http://drhell.web.fc2.com/labo/index.html
20http://www.tagen.tohoku.ac.jp/labo/shindo/staff/akase/patmill.htm
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NFNEV: Number of calculating the weighted sum of squares (Gauss–Newton and modified Mar-
quardt methods).

ITER: Iteration number (conjugate-direction method).
NFUNCT: Number of calculating the weighted sum of squares (conjugate-direction method).

DAMP: Damping factor, d, in the Gauss–Newton method (see 4.5).
LAMBDA: Marquardt parameter, λ, in the modified Marquardt method (see 4.1.2).

T: Penalty parameter, tpJq, in Eq. (5.2).

Note that the message

Too large Marquardt parameter

means either divergence or convergence of the solution. After the convergence has been attained,
λ increases necessarily because Spxq (F pxq in Rietveld analysis under restraints) can no longer
be reduced in the current least-squares calculation.

17.8.3 Ensuring convergence

IF NPRINT is 1 or 2, DELTA.A/SIGMA, |∆xj |{σj , is output in the final list of fixed and refined
parameters. The standard uncertainty, σj , of the jth parameter, xj is calculated with Eq. (4.13).
Whereas IUCr imposes a requirement of |∆xj |{σj ď 0.05 for all the variable parameters to ensure
the completeness of structure refinements from single-crystal diffraction data, |∆xj |{σj ă 0.1 is
quite satisfactory in those from powder diffraction data [237].

17.8.4 Information about the restraints imposed on geometrical parameters
after refinement

After the above title, the following data obtained from final lattice and structure parameters are
output for all the restraints imposed on geometrical parameters:

I: Serial number of this restraint.
KIND: BL = bond length, BA = bond angle, and TA = dihedral angle.

GEOM_PAR: Geometrical parameter.
EXPCTD: Expected geometrical parameter, i.e., l12jpexpq in Eq. (5.8), φ123kpexpq in Eq.

(5.9), or ω1234lpexpq in Eq. (5.10).
DEV: Allowed deviation from the expected geometrical parameter, i.e., ∆l12jpxq in Eq.

(5.8), ∆φ123kpxq in Eq. (5.9), or ∆ω1234lpxq in Eq. (5.10).
WEIGHT: 1{l12jpxq in Eq. (5.8), 1{φ123kpxq in Eq. (5.9), or wpω1234lq in Eq. (5.10).

VR: Violated restraint, i.e., function min in Eq. (5.8), (5.9), or (5.10).
PERCENT: Percentage of this penalty in the total of penalty terms, i.e., Plpxq ` Pφpxq ` Pωpxq

in Eq. (5.2).
A: Atom A relevant to the geometrical parameter.
B: Atom B relevant to the geometrical parameter.
C: Atom C relevant to the bond angle or dihedral angle.
D: Atom D relevant to the dihedral angle.
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17.8.5 Reliability indices, a goodness-of-fit indicator, and Durbin–Watson
statistics

After a title line

Reliability factors, a goodness-of-fit indicator, and Durbin-Watson statistic

their seven values are output:

Rwp: R-weighted pattern, Rwp, calculated with Eq. (4.15).
Rp: R-pattern, Rp, calculated with Eq. (4.16).
RR: R-Rietveld, RR, calculated with Eq. (4.17).
Re: R-expected, Re, calculated with Eq. (4.18).
S: Goodness-of-fit indicator, S, calculated with Eq. (4.19).

d1: The weighted form of the Durbin–Watson statistic, dDW, calculated with Eq. (4.30).
d2: The unweighted form of the Durbin–Watson statistic, dDW, calculated with Eq. (4.31).

From the two forms of the Durbin–Watson statistics, select whichever we like.

17.8.6 Estimated factor to adjust errors of observed structure factors

For each phase, the following reliability indices based on integrated intensities plus a regulating
factor are output:

RB: R-Bragg factor, RB, calculated with Eq. (4.21).
RF: R-structure factor, RF , calculated with Eq. (4.22).

RF^2: RF 2 , calculated with Eq. (4.23).
E(SCIO): estimated factor, E/rad, to adjust σp|FophKq|q (see 14.5).

After hoge.fos output by RIETAN-FP has been read in by Dysnomia, σ p|FophKq|q is calculated
with Eq. (14.18). E(SCIO) will serve as an initial estimate of E on the use of Dysnomia for MEM
analysis; Dysnomia allows us to specify E to adjust σ p|FophKq|q.

17.8.7 Information on final structure parameters in the asymmetric unit

Only parameter values are output without any standard uncertainties (s.u.’s) for structure
parameters on which linear constrains are imposed, i.e., ID(I) = 2. For example, in a certain
compound with space group R3̄m, no s.u.’s are given for y coordinates in the 18h site where
y “ ´x:

O2 18h x -x z 18 1.0000 18.0000 0.17091 -0.17091 0.10566...
- - - 0.00019 - 0.00009...

O3 18h x -x z 18 0.3333 5.9999 0.68870 -0.68870 -0.00226...
- - - 0.00221 - 0.00023...

If necessary, add s.u.’s in parentheses just after parameter values with appropriate numbers of
significant figures in lists of structure parameters.

Note that the first coordinate triplet is output in hoge.lst for (multiplicity + Wyckoff letter)
of each site, e.g., in the case of fluorapatite,
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Atom Site neq * g = n x y z .....
O1 6h x y 1/4 6 1.0000 6.0000 0.32417 0.48535 0.25000 .....

- - - 0.00033 0.00034 - .....
O2 6h x y 1/4 6 1.0000 6.0000 0.59177 0.46981 0.25000 .....

- - - 0.00035 0.00037 - .....
O3 12i x y z 12 1.0000 12.0000 0.33915 0.25727 0.06981 .....

- - - 0.00027 0.00027 0.00027 .....
P 6h x y 1/4 6 1.0000 6.0000 0.39731 0.36787 0.25000 .....

- - - 0.00016 0.00016 - .....
Ca1 4f 1/3 2/3 z 4 1.0000 4.0000 0.33333 0.66667 0.00133 .....

- - - - - 0.00023 .....
Ca2 6h x y 1/4 6 1.0000 6.0000 0.24180 -0.00795 0.25000 .....

- - - 0.00012 0.00015 - .....
F 2a 0 0 1/4 2 1.0000 2.0000 0.00000 0.00000 0.25000 .....

- - - - - .....

Each (multiplicity + Wyckoff letter) output in hoge.lst is obtained by STRUCTURE TIDY [169]
embedded in RIETAN-FP, and the Wyckoff letter is further used to output a linear-constraint
number, NCON, for anisotropic atomic displacement parameters, βij , of the site; NCONS is included
in ‘.....’ in the above list. Therefore, the standardization of crystal data (see Chap. 9) with
RIETAN-FP or VESTA is highly recommended both to get the right (multiplicity + Wyckoff
letter) and to refine βij ’s, in particular when the standardization by STRUCTURE TIDY
accompanies changes in a, b, c axes or the origin. At any rate, checking fractional coordinates of
sites, where βij ’s are assigned by referring to the above part in hoge.lst, is strongly recommended
on the refinement of βij ’s.

Of course, each multiplicity in (multiplicity + Wyckoff letter) must be equal to neq, which is
evaluated from fractional coordinates by checking the overlap of equivalent positions generated
from coordinate triplets recorded in spgra (see Table 17.1). If they differ from each other, check
the values of x, y, and z (e.g., numbers of digits) input for the site.

Numerical values in the list of atomic displacement parameters are equal to 106βij (dimen-
sionless), 106Uij{Å2, Beq{Å2, and Ueq{Å2. Note that βij and Uij{Å2 are multiplied by 106 to
represent them and their s.u.’s by integers.

It is very easy to learn whether the three conditions, Eqs. (3.26), (3.27), and (3.28), are
satisfied for each site. On the other hand, the other conditions, Eqs. (3.29) and (3.30), need
to be checked by calculating their left-hand sides. After NCON, betacon is output for each site
where anisotropic atomic displacement parameters (β11j , β22j , β33j , β12j , β13j , and β23j) have
been input by the user. Two signs are output for the fourth and fifth conditions, Eqs. (3.29)
and (3.30), that have to be satisfied among six anisotropic atomic displacement parameters after
Rietveld refinement:

• `, `: β11jβ22j ` β22jβ33j ` β33jβ11j ´ β212j ´ β213j ´ β223j ą 0 and detβ ą 0

• `, ´: β11jβ22j ` β22jβ33j ` β33jβ11j ´ β212j ´ β213j ´ β223j ą 0 and detβ ă 0

• ´, `: β11jβ22j ` β22jβ33j ` β33jβ11j ´ β212j ´ β213j ´ β223j ă 0 and detβ ą 0

• ´, ´: β11jβ22j ` β22jβ33j ` β33jβ11j ´ β212j ´ β213j ´ β223j ă 0 and detβ ă 0
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Unless '+, +' is given, a set of βijs for a crystallographic site is physically meaningless, which
is, most probably, caused by imperfect modeling of absorption, backgrounds, neglected thermal
diffuse scattering, etc. Not βjis but an isotropic atomic displacement parameter, Bj , should be
refined for such a site.

Below the list of anisotropic atomic displacement parameters, a list of linear constraints
imposed on βij ’s [70] is output:

NCON beta11 beta22 beta33 beta12 beta13 beta23
1 0 0

* 2 0 0
3 0 0
4 0 0 0
5 A A 0 0
6 A A B B
7 A A B -B
8 A A 0 0 0
9 A A 0 0
10 A A B B
11 A A -B B
12 A A 0 0 0
13 A A/2 0
14 A A/2 0 0
15 A A/2 B 2B

* 16 A A A/2 0 0
17 A A A 0 0 0
18 A A A B B B

where asterisks before NCON values are attached to sites included in the asymmetric unit of
fluorapatite.

17.8.8 Mass fractions in a mixture

A part of Cu3Fe4P6.lst giving results of quantitative analysis is listed below, with some spaces
(between Phase and R) deleted:

Phase R mu/rho mu [mu-mu(mean)]R tau w X w(cor) X(cor)
Cu3Fe4(PO4)6 5.000 97.540 390.558 0.00418 0.994 0.9487 0.8700 0.9557 0.8864
Cu3(PO4)2 5.000 42.104 189.115 -0.09655 1.155 0.0370 0.0873 0.0321 0.0766
Cu2P2O7 5.000 41.684 173.468 -0.10437 1.169 0.0143 0.0427 0.0123 0.0370

In the above output, R is Rp, mu/rho is the mass attenuation coefficient (µp{ρp), mu is µp,
[mu-mu(mean)]R is pµp ´ µqRp, tau is τp, w is wp, and X is the mole fraction; ‘cor’ denotes
correction for microabsorption (see 7.2).
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17.8.9 Columns in the summary of possible reflections

Phase: Phase number.
h: Reflection index, h.
k: Reflection index, k.
l: Reflection index, l.

Code: Three-character code to represent characteristics of the hkl reflection.
2-theta: Diffraction angle, 2θK .

d: Lattice-plane spacing, dK .
Iobs: Observed integrated intensity, IophKq.
Ical: Calculated integrated intensity, IphKq.

|F(crys)|: Crystal-structure factor, |F phK , cryst.q|.
|F(magn)|: Magnetic-structure factor, |F phK ,magn.q| (output only in neutron diffraction).

POF: Preferred-orientation function, PK .
FWHM: Full-width at the half-maximum intensity, HK .

m: Multiplicity, mK .
Dd/d: Resolution, ∆dK{dK “ HK{ tan θK .

Defaults of the first and second characters of Code are both ‘ ’ (space). When using the split
pseudo-Voigt or Pearson VII profile functions, partial profile relaxation (see 4.4) was applied to
this reflection if the first character is ‘*’. Signs ‘+’ and ‘-’ given as the second character in the
case of X-ray diffraction are, respectively, hkl and h̄k̄l̄ reflections for a Friedel pair (see 3.5.1).
Numbers 2 and 1 in the third column are assigned to Kα2 radiation in characteristic X rays and
other radiation (neutron and synchrotron X rays), respectively.

In the simulation mode (NMODE = 1), Ical is adjusted in such a way that the strongest
reflection has an integrated intensity of 105.

17.8.10 Marks given to observed integrated intensities

In ‘Summary of possible reflections’ output at the tail of hoge.lst, column Iobs gives the following
data and marks:

Iobs: Full observed (positive) and calculated profiles have been obtained.
'-': Part of the observed profile is lacking as a result of excluding a 2θ region.
'W': Full observed (negative) and calculated profiles have been obtained.
'H': Part of the profile exceeds 2θmax.

'G'+Iobs: Group of reflections with nearly equal lattice-plane spacings, d.

Iobs denotes IophKq rounded off to an integer. Marks ‘-’, ‘W’, ‘H’, and ‘G’ provide us with
important information about ‘imperfect’ reflections when MEM analysis is performed from
powder-diffraction data. Reflections with these marks are excluded from calculations of RB and
RF with Eqs. (4.21) and (4.22), respectively. If 2θ ranges of calculating reflection profiles are very
wide, ‘-’ may be output for low-angle reflections when deleting intensity data in the low-angle
region in pattern fitting.
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No observed structure factors, FophKq, of high-angle reflections marked with ‘H’ are output in
hoge.fos, where only their indices, hkl, are given (see 14.7.3). After MEM analysis from FophKq

and σ
`

|FophKq|
˘

, Dysnomia outputs the estimated F phKq’s of the ‘H’ reflections in hoge.fba for
subsequent whole-pattern fitting.
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LICENSE AGREEMENT

RIETAN-FP is currently copyrighted but distributed free of charge with its source code not open
to the public because I wish to control its development and future by myself.

Whenever original results acquired with RIETAN-FP are published in journals, proceedings,
facility reports, etc. or reported in scientific meetings with abstracts, the program name “RIETAN-
FP” should explicitly be stated. Furthermore, cite the following paper [1]:

F. Izumi and K. Momma, “Three-dimensional visualization in Powder Diffraction,”
Solid. State Phenom., 130, 15–20 (2007).

Only giving credit to RIETAN-FP for Rietveld or MPF analysis is fine in the cases of abstracts,
short reports, and so forth with limited spaces, e.g., as follows:

The structure parameters of CaTiO3 were refined by the Rietveld method from the
X-ray diffraction data with RIETAN-FP.

You should not redistribute any copy of the distributed files unless you have a written
permission from us.

Although RIETAN-FP has exhaustively been tested with intensity data of many compounds,
it may still contain a fair number of bugs. RIETAN-FP is distributed in the hope that it will
be useful and reliable. It is, however, provided “as it is” without any warranty since I have
a number of commitments on my time. There is no charge for the program, per se, whereas
technical service concerning it is not free.
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Appendix A

PHYSICAL QUANTITIES
CALCULATED FROM METRIC
TENSORS

A.1 Metric Tensors of Direct and Reciprocal Lattices

The metric tensor (matrix) of the direct lattice is defined as

G “

¨

˚

˝

a ¨ a a ¨ b a ¨ c

b ¨ a b ¨ b b ¨ c

c ¨ a c ¨ b c ¨ c

˛

‹

‚

“

¨

˚

˝

a2 ab cos γ ac cosβ

ba cos γ b2 bc cosα

ca cosβ cb cosα c2

˛

‹

‚

,

(A.1)

where a, b, and c are the primitive lattice vectors of the direct lattice. The elements of G define
both the moduli of a, b, and c, and the angles between them [238]. As well as for the direct
lattice, a metric tensor may be defined for the reciprocal lattice:

G˚ “

¨

˚

˝

a˚ ¨ a˚ a˚ ¨ b˚ a˚ ¨ c˚

b˚ ¨ a˚ b˚ ¨ b˚ b˚ ¨ c˚

c˚ ¨ a˚ c˚ ¨ b˚ c˚ ¨ c˚

˛

‹

‚

“

¨

˚

˝

a˚2 a˚b˚ cos γ˚ a˚c˚ cosβ˚

b˚a˚ cos γ˚ b˚2 b˚c˚ cosα˚

c˚a˚ cosβ˚ c˚b˚ cosα˚ c˚2

˛

‹

‚

.

(A.2)

In Eq. (A.2), a˚, b˚, and c˚ are the primitive lattice vectors of the reciprocal lattice [238]:

a˚ “
b ˆ c

a ¨ pb ˆ cq

“
b ˆ c

V
,

(A.3)

b˚ “
c ˆ a

b ¨ pc ˆ aq

“
c ˆ a

V
,

(A.4)
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c˚ “
a ˆ b

c ¨ pa ˆ bq

“
a ˆ b

V
,

(A.5)

where V is the unit-cell volume that can easily be calculated from G (see A.8).
G é G˚ conversions are very easy; G˚ is equal to the inverse matrix of G,

G˚ “ G´1, (A.6)

and vice versa:
G “ pG˚q´1. (A.7)

General equations to calculate cosines of α˚, β˚, γ˚, and a˚, b˚, and c˚ from direct-lattice
ones are as follows:

a˚ “
bc sinα

V
, (A.8)

b˚ “
ac sinβ

V
, (A.9)

c˚ “
ab sin γ

V
, (A.10)

sinα˚ “
V

abc sinβ sin γ
. (A.11)

cosα˚ “
cosβ cos γ ´ cosα

sinβ sin γ
, (A.12)

sinβ˚ “
V

sinα sin γ
, (A.13)

cosβ˚ “
cos γ cosα ´ cosβ

sin γ sinα
, (A.14)

sin γ˚ “
V

sinα sinβ
, (A.15)

cos γ˚ “
cosα cosβ ´ cos γ

sinα sinβ
. (A.16)

The metric tensor incorporates the information for the lattice, i.e., the lattice parameters,
into a single matrix. In general, geometrical parameters related to lattice dimensions can easily
be calculated from G and G˚, as described in what follows.

A.2 Reciprocal-Lattice Vector

The reciprocal-lattice vector, sK , is defined as

sK “ ha˚ ` kb˚ ` lc˚. (A.17)

It is related to h by

sK ¨ a “ h, (A.18)

sK ¨ b “ k, (A.19)

sK ¨ c “ l. (A.20)
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The magnitude of sK can be evaluated from the diffraction indices hkl and G˚:
s2K “ |sK |2

“ |ha˚ ` kb˚ ` lc˚|2

“ rh ¨ G˚ ¨ h

“

´

h k l
¯

¨

˚

˝

a˚2 a˚b˚ cos γ˚ a˚c˚ cosβ˚

b˚a˚ cos γ˚ b˚2 b˚c˚ cosα˚

c˚a˚ cosβ˚ c˚b˚ cosα˚ c˚2

˛

‹

‚

¨

˚

˝

h

k

l

˛

‹

‚

“ h2a˚2 ` k2b˚2 ` l2c˚2 ` 2klb˚c˚ cosα˚ ` 2lhc˚a˚ cosβ˚ ` 2hka˚b˚ cos γ˚.

(A.21)

A.3 Scattering Vector

Because the scattering vector, QK , is given by

QK “ 2πsK , (A.22)

its magnitude can be calculated from the elements of G˚ (a˚2, b˚2, c˚2, b˚c˚ cosα˚, c˚a˚ cosβ˚,
and a˚b˚ cos γ˚):

QK “ |QK |

“ 2πsK .
(A.23)

A.4 Lattice-Plane Spacing

The lattice-plane spacing, dK , is equal to the reciprocal of sK :

dK “
1

d˚
K

“
1

sK
.

(A.24)

A.5 Bragg Angle

Because dK and the Bragg angle, θK , are related by the Bragg equation,

λ “ 2dK sin θK , (A.25)

we can calculate sin θK using

sin θK “
λ

2dK

“
λsK
2
.

(A.26)

Then, it follows that

θK “ arcsin

ˆ

λsK
2

˙

. (A.27)

The profile function, Gp∆2θiKq, in the model function, (2.5), contains θK , which is calculated
from lattice parameters as described above. In other words, the lattice parameters are contained
in Gp∆2θiKq.

Partial derivatives of the Bragg angle, θK , with respect to the six elements of G˚ are described
in Appendix A.7.
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A.6 Partial Derivatives of Lattice Parameters with Respect to
the Elements of the Metric Tensor for the Reciprocal Lattice

In Rietveld analysis with RIETAN-FP, lattice parameters are at first converted into G with Eq.
(A.1) and then into G˚ with Eq. (A.6). The values of dK and θK are calculated from the elements
of G˚ with Eqs. (A.27) and (A.24), respectively. Thus, it is not (direct) lattice parameters (a,
b, c, α, β, and γ) but the elements of G˚ that are actually refined in Rietveld analysis. After
refining x by the Rietveld method, G˚ is reconverted into G with Eq. (A.7) to obtain the lattice
parameters.

Let x1 “ a˚2, x2 “ b˚2, x3 “ c˚2, x4 “ b˚c˚ cosα˚, x5 “ c˚a˚ cosβ˚, and x6 “ a˚b˚ cos γ˚

for simplicity. Then, Eq. (A.21) can be rewritten as

s2K “ h2x1 ` k2x2 ` l2x3 ` 2klx4 ` 2lhx5 ` 2hkx6. (A.28)

Kelsey [239] derived equations to calculate standard uncertainties of lattice parameters from
those of the elements of G˚, i.e., x1, x2, x3, x4, x5, and x6 in Eq. (A.28). Partial derivatives of
lattice parameters, F , for the triclinic system [239] are listed in Table A.1, where A, B, and C
are defined as

A “ 2 cosβ cos γ ´ cosα
`

cos2 β ` cos2 γ
˘

, (A.29)

B “ 2 cosα cos γ ´ cosβ
`

cos2 α ` cos2 γ
˘

, (A.30)

C “ 2 cosα cosβ ´ cos γ
`

cos2 α ` cos2 β
˘

. (A.31)

Table A.1: Partial derivatives of lattice parameters for the triclinic system

F ∂F {∂x1 ∂F {∂x2 ∂F {∂x3 ∂F {∂x4 ∂F {∂x5 ∂F {∂x6

a ´1
2a

3 ´1
2ab

2 cos2 γ ´1
2ac

2 cos2 β ´abc cosβ cos γ ´a2c cosβ ´a2b cos γ

b ´1
2a

2b cos2 γ ´1
2b

3 ´1
2bc

2 cos2 α ´b2c cosα ´abc cosα cos γ ´ab2 cos γ

c ´1
2a

2c cos2 β ´1
2b

2c cos2 α ´1
2c

3 ´bc2 cosα ´ac2 cosβ ´abc cosα cosβ

α a2A{2 sinα 1
4b

2 sin 2α 1
4c

2 sin 2α bc sinα ac sinα cos γ ab sinα cosβ

β 1
4a

2 sin 2β b2B{2 sinβ 1
4c

2 sin 2β bc sinβ cos γ ac sinβ ab sinβ cosα

γ 1
4a

2 sin 2γ 1
4b

2 sin 2β c2C{2 sin γ bc sin γ cosβ ac sin γ cosα ab sin γ

A.7 Partial Derivatives of the Bragg Angle with Respect to the
Elements of the Metric Tensor

Partial derivatives of the Bragg angle, θK , with respect to the six elements of G˚ are indispensable
to nonlinear least-squares methods using derivatives, i.e., Gauss–Newton and modified Marquardt
methods (see 4.1.1 and 4.1.2) in the case of RIETAN-FP. Let θ “ θK , x1 “ a˚2, x2 “ b˚2,
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x3 “ c˚2, x4 “ b˚c˚ cosα˚, x5 “ c˚a˚ cosβ˚, and x6 “ a˚b˚ cos γ˚ for simplicity. From Eqs.
(A.26) and (A.28), we obtain

sin2 θ “
λ2

4

`

h2x1 ` k2x2 ` l2x3 ` 2klx4 ` 2lhx5 ` 2hkx6
˘

, (A.32)

whose both sides are differentiated with respect to x1 to afford

∂

∂θ

`

sin2 θ
˘ ∂θ

∂x1
“
λ2

4
h2.

6
∂θ

∂x1
“

λ2h2

4 sin 2θ

“
X

2
h2

(A.33)

with

X “
λ2

2 sin 2θ
“ d2 tan θ.

Likewise, the following two equations can be derived:

∂θ

∂x2
“

λ2k2

4 sin 2θ

“
X

2
k2,

(A.34)

∂θ

∂x3
“

λ2l2

4 sin 2θ

“
X

2
l2.

(A.35)

Differentiation of the both sides of Eq. (A.32) with respect to x4 yields

∂

∂θ

`

sin2 θ
˘ ∂θ

∂x4
“
klλ2

2
.

6
∂θ

∂x4
“

λ2kl

2 sin 2θ

“ Xkl.

(A.36)

Likewise, the following two equations can be derived:

∂θ

∂x5
“

λ2lh

2 sin 2θ

“ Xlh,

(A.37)

∂θ

∂x6
“

λ2hk

2 sin 2θ

“ Xhk.

(A.38)

If x1 , x2, x3, x4, x5, and x6 are represented by Y , the partial derivatives of the profile function
is formulated as

∂

∂Y
Gp∆2θiKq “

∂

∂θ
Gp∆2θiKq

∂θ

∂Y
. (A.39)

With Eq. (A.39) and the partial derivatives (A.33)–(A.38), the partial derivatives of the
profile function, Gp∆2θiKq, with respect to x1, x2, x3, x4, x5, and x6 can easily be converted
into those with respect to the lattice parameters of the direct cell, a, b, c, α, β, and γ.
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A.8 Unit-Cell Volume

The determinant of G is

|G| “ a2b2c2
`

1 ´ cos2 α ´ cos2 β ´ cos2 γ ` 2 cosα cosβcosγ
˘

, (A.40)

which is equal to V 2:
V “

a

|G|. (A.41)

V ˚ is equal to the reciprocal of V :
V ˚ “ a˚ ¨ b˚ ^ c˚

“
1

V 3
pb ^ cq ¨

“

pc ^ aq ^ pa ^ bq
‰

“
1

V 3
pb ^ cq ¨

“

pc ¨ a ^ bqa
‰

“
1

V

(A.42)

The standard uncertainty of V , σpV q, is calculated from those of a, b, and c [238]:

σpV q “

«

V 2
3

ÿ

i“1

A2
i `

pabcq4

V 2

3
ÿ

i“1

B2
i

ff
1
2

(A.43)

with

A1 “
σpaq

a
, B1 “ sinα pcosα ´ cosβ cos γqσpαq,

A2 “
σpbq

b
, B2 “ sinβ pcosβ ´ cosα cos γqσpβq,

A3 “
σpcq

c
, B3 “ sin γ pcos γ ´ cosα cosβqσpγq.

A.9 Interatomic Distance

The square of the interatomic distance, l12, between atom 1 at (x1, y1, z1) and atom 2 at (x2, y2,
z2) is given by

l212 “

´

x1 ´ x2 y1 ´ y2 y1 ´ y2

¯

G

¨

˚

˝

x1 ´ x2
y1 ´ y2
y1 ´ y2

˛

‹

‚

(A.44)

[240], which is transformed into
l12 “

“

a2px1 ´ x2q2 ` b2py1 ´ y2q2 ` c2pz1 ´ z2q2 ` 2bc cosαpy1 ´ y2qpz1 ´ z2q

`2ca cosβpz1 ´ z2qpx1 ´ x2q ` 2ab cos γpx1 ´ x2qpy1 ´ y2q
‰
1
2 .

(A.45)

A.10 Bond Angle

The cosine of the bond angle, φ123, for atom 1 at (x1, y1, z1), atom 2 at (x2, y2, z2), and atom 3
at (x3, y3, z3) with an apex of atom 2 is calculated as below [240]:

cosφ123 “
1

l12l32

´

x1 ´ x2 y1 ´ y2 y1 ´ y2

¯

G

¨

˚

˝

x3 ´ x2
y3 ´ y2
y3 ´ y2

˛

‹

‚

. (A.46)
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A.11 Lattice Conversion

Because of various reasons, the original unit cell need to be converted into another new unit cell.
In this section, let us attach a prime to each physical quantity relevant to the new lattice. For
example, the magnetic unit cell, MUC, described in 8.1 is required to calculate the magnetic-
structure factor, F phK ,magn.q, of the virtual phase composed of only magnetic atoms on the
basis of the new lattice. Arrays P and Q, which are, respectively, defined in Eqs. (8.1) and (8.4),
are useful for this purpose.

With Eq. (A.1) to define the metric tensor, G, of the direct lattice, the lattice dimensions
of the new unit cell are obtainable from the elements of the metric tensor, G1, of the new unit
cell [170]:

G1 “ rP ¨ G ¨ P . (A.47)

On the other hand, G˚ can be converted into G˚1 by utilizing the relation [170]

G˚1 “ QG˚
rQ. (A.48)

A.12 Conversion of Isotropic Atomic Displacement Parameters
into Anisotropic Ones

When isotropic thermal motion models are changed into anisotropic ones (see 3.5.2), anisotropic
atomic displacement parameters are calculated with an approximation formula

β “
B

4
G˚

“
B

4

¨

˚

˝

a˚2 a˚b˚ cos γ˚ a˚c˚ cosβ˚

b˚a˚ cos γ˚ b˚2 b˚c˚ cosα˚

c˚a˚ cosβ˚ c˚b˚ cosα˚ c˚2

˛

‹

‚

.
(A.49)
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CALCULATION OF MAGNETIC
STRUCTURE FACTORS FOR
THREE SYSTEMS

Equations to calculate
@

cos2 η
D

for triclinic and monoclinic systems in Table 3.3 were derived
by N. Yamada [80] of the University of Electro-Communications to implement them into an
earlier version of RIETAN. In his formulation,

@

cos2 η
D

includes not angles between the magnetic
moment and direct-lattice axes as in the hexagonal, rhombohedral, tetragonal, and orthorhombic
systems but those between the magnetic moment and reciprocal-lattice ones, which simplifies
@

cos2 η
D

considerably.

B.1 Unit Vector along the Magnetic Moment

Let e1, e2, and e3 be the vectors for the reciprocal lattice, and e1, e2, and e3 those for the direct
lattice. Then, vector v is presented by

v “ v1e
1 ` v2e

2 ` v3e
3

“ v1e1 ` v2e2 ` v3e3,
(B.1)

as Fig. B.1 shows. Because
vi “ v ¨ ei (B.2)

and
vj “ v ¨ ej , (B.3)

v is represented by
v “

`

v ¨ e1
˘

e1 `
`

v ¨ e2
˘

e2 `
`

v ¨ e3
˘

e3. (B.4)

If e1, e2, and e3 are, respectively, regarded as a, b, and c, the three vectors, e1, e2, and e3,
for the direct cell are a˚, b˚, and c˚, respectively. Therefore, the unit vector, nph0, k0, l0q ” n,
along the spin (magnetic moment) direction is given by

nph0, k0, l0q “ pn ¨ a˚qa ` pn ¨ b˚q b ` pn ¨ c˚q c. (B.5)

Let ϕa˚ , ϕb˚ , and ϕa˚ be the angles defined in Table 3.3 for the monoclinic and triclinic systems,
then
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v

0 v1 v1 

v2 

v2 

e1

e2

Figure B.1: Components of v along the e1 and e2 axes

n ¨ a˚ “ a˚ cosϕa˚ , (B.6)

n ¨ b˚ “ b˚ cosϕb˚ , (B.7)

n ¨ b˚ “ c˚ cosϕc˚ . (B.8)

Then, it follows that

nph0, k0, l0q “ a˚ cosϕa˚a ` b˚ cosϕb˚b ` c˚ cosϕc˚c. (B.9)

In what follows, cos2 η is calculated after conversion into the angles between the coordinate
axes, a˚, b˚, c˚, and the direction of the spin, nph0, k0, l0q.

B.2 Triclinic

In the triclinic system,

cos η “ nph, k, lq ¨ nph0, k0, l0q

“
`

ha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘

d,
(B.10)

which is transformed into
@

cos2 η
D

“
`

ha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘

d2. (B.11)

B.3 Monoclinic

Because hkl and hk̄l reflections are equivalent to each other in the monoclinic system (unique
axis b),

cos2 η “ d2
”

`

ha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘2

`
`

ha˚ cosϕa˚ ´ kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘2
ı

“ 2d2
”

`

ha˚ cosϕa˚ ` lc˚ cosϕc˚

˘2
`

`

kb˚ cosϕb˚

˘2
ı

,

(B.12)
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from which
@

cos2 η
D

“ d2
”

`

ha˚ cosϕa˚ ` lc˚ cosϕc˚

˘2
` pkb˚ cosϕb˚q

2
ı

(B.13)

is derived.

B.4 Orthorhombic

Though
@

cos2 η
D

for the orthorhombic system was reported by Shirane [77], it will be derived
below using Eq. (B.9). Because hkl hkl̄, hk̄l, and h̄kl reflections are equivalent to each other in
the orthorhombic system,

cos2 η “ d2
”

`

ha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘2

`
`

ha˚ cosϕa˚ ` kb˚ cosϕb˚ ´ lc˚ cosϕc˚

˘2

`
`

ha˚ cosϕa˚ ´ kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘2

`
`

´ha˚ cosϕa˚ ` kb˚ cosϕb˚ ` lc˚ cosϕc˚

˘2
ı

“ 4d2
`

h2a˚2 cos2 ϕa˚ ` k2b˚2 cos2 ϕb˚ ` l2c˚2 cos2 ϕc˚

˘

,

(B.14)

which averages
@

cos2 η
D

“ d2
`

h2a˚2 cos2 ϕa˚ ` k2b˚2 cos2 ϕb˚ ` l2c˚2 cos2 ϕc˚

˘

“ d2
`

h2a˚2 cos2 ϕa ` k2b˚2 cos2 ϕb ` l2c˚2 cos2 ϕc

˘

(B.15)

per reflection. Equation (B.15) corresponds to Eq. (14) in Ref. [77].
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Appendix C

SEMI-EMPIRICAL EXPRESSIONS
FOR ANISOTROPIC
MICROSTRAIN BROADENING

C.1 Derivation of the Anisotropic Microstain Broadening

By substitution of s2K for Mhkl, Eq. (A.28) can be rewritten as

Mhkl “ h2x1 ` k2x2 ` l2x3 ` 2klx4 ` 2lhx5 ` 2hkx6. (C.1)

Let us assume that xi parameters (i “ 1 ´ 6) have a Gaussian distribution characterized by
a covariance matrix, Cij “ xpxi ´ xxiyqpxj ´ xxjyqy, with Cii “ σ2pxiq [97]. Because Mhkl is
linear with respect to xi, the variance of Mhkl, i.e., the anisotropic microstrain broadening, Γa,
is calculated by

Γ 2
a “ σ2pMhklq

“
ÿ

i,j

Cij
∂M

∂xi

∂M

∂xj
.

(C.2)

Given the individual partial derivatives, ∂M{∂x1 “ h2, ∂M{∂x2 “ k2, ∂M{∂x3 “ l2, ∂M{∂x4 “

kl, ∂M{∂x5 “ lh, and ∂M{∂x6 “ hk, we obtain

∂M

∂xi

∂M

∂xj
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

h4 h2k2 h2l2 h2kl h3l h3k

h2k2 k4 k2l2 k3l hk2l hk3

h2l2 k2l2 l4 kl3 hl3 hkl2

h2kl k3l kl3 k2l2 hkl2 hk2l

h3l hk2l hl3 hkl2 h2l2 h2kl

h3k hk3 hkl2 hk2l h2kl h2k2

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (C.3)

Equation (C.2) can therefore be rearranged as

Γ 2
a “

ÿ

HKL

SHKLh
HkK lL (C.4)

with terms SHKL defined for H ` K ` L “ 4. Thus, anisotropic microstrain broadening is
represented by the SHKL coefficients in the phenomenological model developed by Stephens [97]
(see 3.9.3).
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C.2 Anisotropic Microstrain Broadening in All the Laue Classes

There are 15 refinable SHKL coefficients for the triclinic crystal system: S400, S040, S004, S220,
S202, S022, S310, S103, S031, S130, S301, S013, S211, S121, and S112 [97]. On the other hand, Laue
symmetry imposes restrictions on SHKL coefficients in Laue classes other than 1̄ (triclinic), so
that from 2 coefficients in the cubic crystal system to 15 coefficients in the triclinic one are
needed to describe anisotropic macrostrain broadening.

In what follows, Γ 2
a in Eq. (3.74) [87] are represented as functions of SHKL coefficients for all

the Laue classes that can be used in RIETAN-FP without any standardization of crystal data
(see Chap. 9). In hoge.ins for Rietveld or Le Bail analysis, coefficients which are not included in
Eqs. (C.5)–(C.14) should be fixed at 0.0 with ID(I) = 0 (see Table S-6) though they are dummy
parameters.

Triclinic p1̄q

Γ 2
a “ S400h

4 ` S040k
4 ` S004l

4 ` 3pS220h
2k2 ` S202h

2l2 ` S022k
2l2q`

2pS310h
3k ` S103hl

3 ` S031k
3l ` S130hk

3 ` S301h
3l ` S013kl

3q`

4pS211h
2kl ` S121hk

2l ` S112hkl
2lq

(C.5)

Monoclinic (2{m)

Γ 2
a “ S400h

4 ` S040k
4 ` S004l

4 ` 3pS220h
2k2 ` S202h

2l2 ` S022k
2l2q`

2pS301h
3l ` S103hl

3q ` 4S121hk
2l

(C.6)

Orthorhombic (mmm)

Γ 2
a “ S400h

4 ` S040k
4 ` S004l

4 ` 3S220h
2k2 ` S202h

2l2 ` S022k
2l2q (C.7)

Tetragonal (4{m)

Γ 2
a “ S400ph4 ` k4q ` S004l

4 ` 3S220h
2k2 ` 3S202ph2l2 ` k2l2q ` 2S310ph3k ´ hk3q (C.8)

Tetragonal (4{mmm)

Γ 2
a “ S400ph4 ` k4q ` S004l

4 ` 3S220h
2k2 ` 3S202ph2l2 ` k2l2q (C.9)

Trigonal (3̄)

Γ 2
a “ S400ph4 ` k4 ` 2h3k ` 2hk3 ` 3h2k2q ` S004l

4 ` 3S202ph2l2 ` k2l2 ` hkl2q`

S301p2h3l ´ 2k3l ´ 6hk2lq ` 4S211ph2kl ` hk2lq
(C.10)

Trigonal (3̄m1)

Γ 2
a “ S400ph4 ` k4 ` 3h2k2 ` 2h3k ` 2hk3q ` S004l

4 ` 3S202ph2l2 ` k2l2 ` hkl2q`

S301p3h2kl ´ 3hk2l ` 2h3l ´ 2k3lq
(C.11)
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Trigonal (3̄1m)

Γ 2
a “ S400ph4 ` k4 ` 3h2k2 ` 2h3k ` 2hk3q ` S004l

4 ` 3S202ph2l2 ` k2l2 ` hkl2q`

4S211ph2kl ` hk2lq
(C.12)

Hexagonal (6{m and 6{mmm)

Γ 2
a “ S400ph4 ` k4 ` 3h2k2 ` 2h3k ` 2hk3q ` S004l

4 ` 3S202ph2l2 ` k2l2 ` hkl2q (C.13)

Cubic (m3̄ and m3̄m)

Γ 2
a “ S400ph4 ` k4 ` l4q ` 3S220ph2k2 ` h2l2 ` k2l2q (C.14)
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Appendix D

CALCULATIONS OF
GEOMETRICAL PARAMETERS
BY ORFFE

ORFFE developed by Busing, Martin, and Levy et al. [136] is used to calculate interatomic
distances and bond angles from data recorded in text files, hoge.xyz, output by RIETAN-FP.
With ORFFE, standard uncertainties of geometrical parameters are strictly calculated from both
the diagonal and off-diagonal elements of the variance-covariance matrix. Tho original program
of ORFFE has been extensively modified to obtain bond lengths and angles related to atoms in
the asymmetric unit.

Though many functions including those related to thermal motion are available in ORFFE,
three functions 201 (D.1), 002 (D.2), and 003 (D.3) written in fixed-column formats would be
sufficient in nearly all structure refinements. Note that the formats of these two were changed
from original ones in ORFFE. Instructions to use these two are also described in file hoge.ins.
These two functions, if any, must be ordered as above.

For details of three integers, A, C, and S, described in D.1 and D.2, refer to an output file,
hoge.dst or hoge.ffe, of ORFFE. In these files, values of site numbers A, translation numbers
C, symmetry operation numbers S, and 1000C ` S for all the geometrical parameter are also
output.

D.1 Function 201

All distances (less than lmax) between Amax atoms in the asymmetric unit and atoms in all
asymmetric units, i.e., all combinations of C and S.

Columns Input data

1–5 201
6–10 Amax, the number of sites in the asymmetric unit
26–30 The integer 10lmax.

The format of this line is (2I5,15X,I5); that is, the three integers 201, Amax, and 10lmax are
right-justified with 5 columns, and ‘15X’ means 15 spaces. If columns 26–30 are left blank, then
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lmax is set at 4.0Å. In hoge.xyz files, functions 201 must be always included, followed by optional
functions 2 to calculate bond angles.

D.2 Function 002

Bond angle defined by atoms 1, 2, and 3.

Columns Input data

1–5 002
6–10 A for atom 1
11–15 1000C ` S for atom 1
16–20 A for atom 2 (vertex)
21–25 1000C ` S for atom 2 (vertex)
26–30 A for atom 3
31–35 1000C ` S for atom 3

Of course, ‘ 2’ may be substituted for ‘002’. The format of this line is (7I5); that is, all of
the seven integers are right-justified with 5 columns. Each atom designation consists of A and
1000C ` S.

D.3 Function 003

Dihedral angle between planes each defined by three atoms, that is, angle between normals to
planes defined by atoms 1, 2 and 3, and atoms 4, 5 and 6, respectively. If right-hand fingers are
curved so that they can pass successively through atoms 1, 2 and 3 then the thumb is in direction
of normal. Sign of angle will be positive if this normal makes an acute angle with vector from
atoms 4, 5 and 6.

Columns Input data

1–5 003
6–10 A for atom 1
11–15 1000C ` S for atom 1
16–20 A for atom 2
21–25 1000C ` S for atom 2
26–30 A for atom 3
31–35 1000C ` S for atom 3
36–40 A for atom 4
41–45 1000C ` S for atom 4
46–50 A for atom 5
51–55 1000C ` S for atom 5
56–60 A for atom 6
61–65 1000C ` S for atom 6
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Of course, ‘ 3’ may be substituted for ‘003’. The format of this line is (13I5); that is, all of
the 13 integers are right-justified with 5 columns. Each atom designation consists of A and
1000C ` S as is the case with function 002.

D.4 Automatic Generation of Functions 002

Instruction 002 has to be specified for each bond angle. It is very troublesome and mistakable
to input three sets of A and 1000C ` S per bond angle. With RIETAN-FP, we need not to
input functions 2 in hoge.ins. At first, RIETAN-FP is executed after only 201 functions have
been input in hoge.ins. Then, the resultant file, hoge.xyz, is dealt with ORFFE to update it.
The file, hoge.xyz, updated contains functions 2 at its tail for all the combinations of two atom
pairs (atoms 2–1 and atoms 2–3) whose interatomic distances have been calculated by giving 201
functions in hoge.ins. These functions 2 cover all the sites input in hoge.ins. When processing
hoge.xyz updated in the above way by ORFFE, a series of bond angles is output after interatomic
distances in hoge.dst (and hoge.ffe).

D.5 Calculation of Geometrical Parameters in the Simulation
Mode

ORFFE may be executed even in the simulation mode (NMODE = 1), where standard uncertainties
of geometrical parameters are set at zero, for convenience.

D.5.1 Single-phase simulation

Setting NDA at 1 as given below for the case of Fapatite.ins produces hoge.xyz, from which
hoge.dst (and hoge.ffe) is output by ORFFE.

NDA = 0! No file is output which store ORFFE data.
NDA = 1! Filename.xyz for ORFFE is output for the first phase.
NDA = 1

If NDA > 0 then
# Input ORFFE functions as required and place '}' (+ comment) at the tail.
# Refer to the user's manual for ORFFE functions used frequently. ORFFE
# functions must be input with a fixed column format; note not to set input
# data at erroneous positions. When NDA > 0, hoge.xyz is output. This file is
# used as an input file for ORFFE to calculate interatomic distances and bond
# angles. ORFFE functions in hoge.xyz can be modified and/or added by the user.

ORFFE functions start {
# Note that the formats of ORFFE functions differ from original ones!
# 1 2 3 4 5 6 7 8
#2345678901234567890123456789012345678901234567890123456789012345678901234567890

# Function 201, FORMAT(2I5,15X,I5). Output a list of interatomic distances for
# all the sites. The second number is the number of sites, and the third integer
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# is 10 X (maximum distance in Angstroms).
# Interatomic distances less than 3.1 angstroms are listed
201 7 31

# Function 002, FORMAT(7I5). Calculate a bond angle. Three sets of A and
# 1000*C + S (refer to the output of ORFFE) follow after function 002. Automatic
# generation of functions 002 is highly recommended (see Appendix D.4).

} End of ORFFE functions.
# ORFFE functions can be modified and added by editing hoge.xyz directly.
end if

Note that simulation of powder diffraction patterns (NMODE = 1) is followed by calculation of
interatomic distances and bond angles by ORFFE using hoge.xyz created by RIETAN-FP. Of
course, no standard uncertainties of the geometrical parameters are output by ORFFE in this
case.
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Appendix E

lst2cif

E.1 A File Converter, lst2cif, to Create Crystallographic Infor-
mation Files

The International Union of Crystallography (IUCr) strongly recommends to submit a crystallo-
graphic information file1 (CIF) [241] on publication of every paper reporting results of structure
analysis. Core CIF dictionary (coreCIF) v2.4.22 and Powder CIF dictionary v1.0.13 are available
online from the Web site of IUCr. The definition and classification of CIF data for powder
diffraction is described in “International Tables for Crystallography,” Vol. G [242]. A utility
program, lst2cif, to convert hoge.lst (the standard output of RIETAN-FP) and hoge.dst (the
standard output of ORFFE [136]) into a CIF, hoge.cif, (Fig. E.1) is included in the distribution
files for the RIETAN-VENUS package.

CIFs also serve to write papers reporting results of structure analyses. PublCIF4 [243] makes
it possible to convert hoge.cif and hoge.dst into hoge.pdf (Portable Document Format: PDF),
hoge.html compatible with XML (Extensible Markup Language) 1.0, and hoge.rtf (Rich Text
Format: RTF) which can be input and modified by Microsoft Word, OpenOffice.org,5 and other
word processors.

PublCIF also offers a very convenient feature of Online checkCIF, which can be select in the
Tools menu.

E.2 Structure Parameters and Other Information on Crystallo-
graphic Sites

In the case of Fapatite.* included in the distribution files, structure parameters are output in
hoge.cif as follows:

loop_
_atom_site_label
_atom_site_fract_x

1http://www.iucr.org/resources/cif
2http://www.iucr.org/__data/iucr/cifdic_html/1/cif_core.dic/index.html
3http://www.iucr.org/resources/cif/dictionaries/cif_pd
4http://journals.iucr.org/services/cif/publcif/
5http://www.openoffice.org/
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*.lst

*.cif

*.dst

*.rtf, *.pdf, *.html

lst2cif

publCIF

Output files of
RIETAN-FP

Bond lengths
Bond angles

Standard
output

Figure E.1: Files input and output by lst2cif and publCIF

_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_symbol
_atom_site_adp_type
_atom_site_U_iso_or_equiv
_atom_site_type_symbol

O1 0.3242(3) 0.4854(3) 0.25 1 6 h Uiso 0.0094(9) O
O2 0.5918(4) 0.4698(4) 0.25 1 6 h Uiso 0.0094(9) O
O3 0.3392(3) 0.2573(3) 0.0698(3) 1 12 i Uiso 0.0106(6) O
P 0.3973(2) 0.3679(2) 0.25 1 6 h Uiso 0.0070(3) P
Ca1 0.33333 0.66667 0.0013(2) 1 4 f Uiso 0.0082(3) Ca
Ca2 0.2418(1) -0.0080(2) 0.25 1 6 h Uiso 0.0067(2) Ca
F 0 0 0.25 1 2 a Uiso 0.018(1) F

Nine data in each line must be self-evident from their definitions. Inclusion of

_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_symbol

is highly significant. Only elemental names are output for name_atom_site_type_symbol.
On the use of lst2cif in solid solutions, no virtual chemical species (see 17.3.9) should be used

because atom_site_type_symbol is simply extracted from _atom_site_label.The number of
significant figures can be increased, e.g., by changing 0.33333 into 0.333333 and 0.66667 into
0.666667.

E.3 Geometrical Parameters

Lst2cif is capable of outputting symmetry codes for atoms related to geometrical parameters.
The symmetry code of each atom site is represented by the symmetry-equivalent position
number ‘n’ plus the cell translation number ‘klm’. These numbers are combined to form a

213



APPENDIX E. LST2CIF

single code ‘n_klm’. The first integer, n, denotes the symmetry operation applied to the coor-
dinates stored in _atom_site_- fract_x, _atom_site_fract_y, and _atom_site_fract_z. It
must match a number given in the identifier that uniquely labels each symmetry operation:
_space_group_symop_id. Integers k, l and m refer to the translations that are subsequently
applied to the symmetry-transformed coordinates to generate the atom used in calculating the
bond. These translations (x, y, z) are related to (k, l, m) by the relations

k = 5 + x
l = 5 + y
m = 5 + z

Addition of 5 to the translations never produces negative numbers.
In the case of fluorapatite included in the distribution files, the following lines are output in

the part of #10. GEOMETRICAL PARAMETERS:

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
_geom_bond_publ_flag

O1 P 1.561(3) . 1_555 ?
O1 Ca1 2.383(2) . 1_555 ?
O1 Ca1 2.383(2) . 10_555 ?
O1 O3 2.535(3) . 1_555 ?
O1 O3 2.535(3) . 10_555 ?
.....
loop_

_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
_geom_angle_publ_flag

O3 P O1 110.1(1) 1_555 . 1_555 ?
O3 P O2 108.8(1) 1_555 . 1_555 ?
O1 P O2 110.7(2) 1_555 . 1_555 ?

As illustrated above, one and two symmetry codes are given for interatomic distances and bond
angles, respectively. Periods given for symmetry codes denote atoms in the asymmetric unit:
n_555.
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With publCIF [243], which is an application to edit and preview CIFs for publication, n_klm’s
are automatically converted into another type of symmetry codes containing x, y, and z. PublCIF
outputs geometrical parameters in the preprint window, converting (k, l, m) into another type of
symmetry codes including x, y, and z. If _geom_bond_publ_flag or _geom_angle_publ_flag
is changed from ? to yes or y, and then Acta C preprint or Acta E preprint is selected in
the Preprint menu, only geometrical parameters of the relevant lines are output in the preprint
window.

Figure E.2 gives a part of an RTF file output for fluorapatite, whose Rietveld analysis from
X-ray powder diffraction data is included in distribution files of RIETAN-FP, by publCIF in the
Acta C preprint format and modified later with Microsoft Word. Unfortunately, superscripts
representing numbers for symmetry codes do not increase one by one, starting from 1 in the
current version of publCIF.
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Crystal data 

Ca5FO12P3 V = 523.30 (1) Å3 

Mr = 504.30 Z = 2 

Hexagonal, P63/m Cu K 1, Cu K 2 radiation,  = 1.540593, 
1.544427 Å 

a = 9.3690 (1) Å T = 298 K 

c = 6.88384 (6) Å flat sheet with unknown dimensions 
 

Data collection 

Bragg-Brentano-type X-ray powder  
diffractometer 

Scan method: step 

Specimen mounting: flat plate 2 min = 15.00°, 2 max = 130.00°, 2 step = 0.02° 

Data collection mode: reflection  
 

Refinement 

Rp = 0.064 R(F2) = 0.01933 

Rwp = 0.082 2 = 2.161 

Rexp = 0.056 5751 data points 

RBragg = 0.038 44 parameters 

R(F) = 0.019 0 restraints 
 

Table 1 

Selected geometric parameters (Å, º) 

P–O3 1.531 (2) Ca2–F 2.3036 (9) 

P–O1 1.561 (3) Ca2–O3xiv 2.334 (2) 

P–O2 1.579 (3) Ca2–O2xi 2.344 (3) 

Ca1–O1 2.383 (2) Ca2–O3 2.506 (2) 

Ca1–O2xii 2.453 (2) Ca2–O1xix 2.667 (3) 

Ca1–O3v 2.824 (2)   

    

O3–P–O1 110.1 (1) O1–P–O2 110.7 (2) 

O3–P–O2 108.8 (1)   
 

Symmetry codes: (v) x–y, x, –z; (xi) –y+1, x–y, z; (xii) x–y, x, z–1/2; (xiv) y, –x+y, –z;  

(xix) –x+y, –x, z. 

  Figure E.2: Part of an RTF file obtained from a CIF of fluorapatite with publCIF
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Figure E.3: Part of DATABLOCK I when checking Fapatite.cif by
checkCIF/PLATON

E.4 Publication Check by checkCIF

E.4.1 Addition of data to hoge.cif

Program lst2cif allows us to output CIFs that pass severe tests by checkCIF6 and checkCIF/PLA-
TON7 [244,245] by adding a few data such as

• _chemical_formula_moiety

• _pd_char_colour

• _cell_measurement_temperature

• _diffrn_ambient_temperature

to eliminate alerts issued by checkCIF. A formula to be input for _chemical_formula_moiety is
obtainable as ‘Moiety formula’ from the result of checking CIFs by checkCIF or checkCIF/PLA-
TON. In the case of Fapatite.cif, it is ‘3(O4 P), F, 5(Ca)’ (Fig. E.3). Chemical data are then
recorded in Fapatite.cif as follows:

_chemical_name_systematic
; Fluorapatite
;
_chemical_name_common '?'
_chemical_formula_moiety '3(O4 P), F, 5(Ca)'
_chemical_formula_structural '?'

6http://checkcif.iucr.org/
7http://journals.iucr.org/services/cif/checkcif.html
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_chemical_formula_analytical '?'
_chemical_formula_sum 'Ca5 F O12 P3'
_chemical_formula_weight 504.302

You must input _chemical_formula_moiety by yourself if checkCIF fails in giving the correct
one. In such a case, obey the following general rules:

1. The order of elements within any group or moiety depends on whether carbon is present or
not.

2. If carbon is present, the order should be: C, then H, then the other elements in alphabetical
order of their symbol.

3. If C is not included, the elements are listed purely in the alphabetical order of their symbols.

4. Each moiety has to be separated with a comma, ‘,’.

In the current version of lst2cif, _cell_formula_units_Z is simply set at the minimum site
multiplicity, which may differ from a value determined by checkCIF, particularly in organic
compounds where molecules are connected with each other through hydrogen bonds. In such
a case, change both _chemical_formula_sum and _chemical_formula_weight in addition to
_chemical_formula_weight by yourself.

E.4.2 Temporary expedients to avoid unsuitable alerts

Unfortunately, the current version of checkCIF is far from perfect, outputting unsuitable alerts
in most cases. Users of lst2cif have to overcome such troubles by themselves. For example,
wavelengths of Cu Kα radiation should be given as

loop_
_diffrn_radiation_type
_diffrn_radiation_wavelength
_diffrn_radiation_wavelength_wt

'Cu K\a~1~' 1.540593 0.666667
'Cu K\a~2~' 1.544427 0.333333

Nevertheless, checkCIF/PLATON outputs the following unsuitable alert of level G if they remain
unchanged:

Extra text has been found in the _diffrn_radiation_type field.

We are then obliged to replace the above lines with

loop_
_diffrn_radiation_type
_diffrn_radiation_wavelength
_diffrn_radiation_wavelength_wt

'Cu K\a' 1.5418 1.0
#'Cu K\a~1~' 1.540593 0.666667
#'Cu K\a~2~' 1.544427 0.333333
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Further, checkCIF/PLATON always outputs the following alert of level A:

Minimum (Negative) Residual Density .GE. 0 !!... 0.00 eA-3

even if the CIF was output by lst2cif from hoge.lst and hoge.dst, i.e., results obtained by Rietveld
refinement. This irrational alert can be eliminated by giving maximum and minimum difference
electron densities as dummy data:

_refine_diff_density_max 0.1
_refine_diff_density_min -0.1

Of course, these two lines have to be commented out after checking hoge.cif by checkCIF because
they are false data.

C-level alerts, which arise from geometrical parameters calculated from fractional coordinates
and lattice parameters in hoge.cif created by lst2cif, are often output by checkCIF/PLATON, for
example,

PLAT731_ALERT_1_C Bond Calc 3.029(5), Rep 3.028(2) ...... 3 su-Ra

O3 -O3 1.555 9.555 # 33

PLAT731_ALERT_1_C Bond Calc 2.3038(19), Rep 2.3036(9) ...... 2 su-Ra

F -CA2 1.555 2.555 # 57

Such unreasonable alerts result from deficiency in the number of significant figures and neglecting
off-diagonal elements in the variance-convariance matrix. Two temporary expedients may be
effective in taking steps to cope with such troubles:

1. Delete relevant lines if unnecessary,

2. Change geometrical parameters as indicated in the alerts, for convenience.
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