
1. Introduction
The Rietveld method of structure refinement with

powder diffraction patterns was originally devised for
the analysis of fixed-wavelength (angle-dispersive)
neuron data [1] [2] but now constitutes a major
breakthrough for the usefulness of X-ray powder data
[3]. This powerful method has greatly extended the
amount of structural detail which can be obtained
routinely from powder diffraction patterns. It is ap-
plied to the investigation of crystal structures when
single crystals cannot be prepared at all or when the
properties of interest of the single-crystal form differ
from those of the polycrystalline form, for example, in 
catalysts, sensors, and bioceramics. However, several
problems limit the straightforward application of the
method: restricted information contained in powder
diffraction patterns, difficulty in correction of pre-
ferred orientation, inadequacy of profile shape func-
tions so far used, flat and local minima, narrow con-
vergence range, and inaccurate standard deviations
[4].

A computer program, XPD, for the Rietveld anal-
ysis of X-ray powder data [5] has been extensively
modified to overcome these difficulties to a consider-
able extent and to permit the refinement with neutron

powder data as well [6]. This new version, called
RIETAN (RIETveld ANalysis), plus XPD are distri-
buted to more than 60 research groups, domestic and
foreign. It incorporates almost all convenient features
of a standard program coded by Wiles and Young [7],
for example, handling of anisotropic thermal para-
meters and the two wavelengths in the Kα doublet,
single-pass operation, multiphase capability, refine-
ment.of lattice and preferred-orientation parameters,
and R factors in various shells. In the description that
follows, emphasis is therefore placed on features that
are not implemented in their program.

2. Hardware and OS Requirements
The RIETAN system has been designed for user

convenience and for use by those who have access to
any of standard large computers. It can be run on
FACOM, HITAC, ACOS, VAX, and UNIX (4.2-
BSD) machines without any modifications. The
virtual storage necessary to process a standard job is
less than 2.5 Mbytes. Laser-beam printers with den-
sities larger than 300 dpi are desirable to obtain Riet-
veld refinement patterns (Fig. 1) with good quality.

In future, RIETAN will be run on personal com-
puters (CPU: 80386 microprocessor) equipped with
80387 co-processors and operating under OS/2, Ver.
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1.1 or above. Disk files storing X-ray intensity data
written in a RIETAN format can be read directly by
the program without any conversion of the files.
Although it takes longer times to obtain the final
solution on the personal computers than on standard
large ones, this OS/2 version must be fairly practical
and easy to use owing to advanced features of the
OS/2 operating system such as hierarchical file sys-
tem, powerful full-screen editor, overlapping-type
window system, and multi-task capability.

3. Programming Considerations
The RIETAN program has been written in

FORTRAN 77 in conformity with ANSI X3.9-1978
standards for portability, quite independently of the
program developed by Rietveld [1]. In order to
facilitate reading the code and user-desired changes,
the whole program is segmented into 1 main program
and a little more than 100 subprograms, and many
com­ment lines were sprinkled liberally throughout
ca. 9000 lines of the program. FORTRAN 77 features
which are not supported in FORTRAN IV are fully

utilized: block IF (block IF, ELSE, ELSE IF, and
END IF statements), character type, character sub-
string, list-directed READ statement, internal data set 
input/output statement, and PARAMETER state-
ment.

The use of block IF makes it possible to reduce
the number of GO TO statements to a great extent and
facilitates understanding of the algorithms of the
program. Except for lines in which only a character
variable is input, all data are input in free format: data
placed in a line are separated by a space or a comma;
'/' is placed as the last character of the line if default
values are assigned for the rest of data to be input.
Maximum numbers of reflections, step-scanned
intensity data, total parameters, refinable parameters,
chemical species, etc. are declared in PARAMETER
statements and used as declarator subscripts of many
arrays. Accordingly, the dimensions of these arrays in 
the whole text can be changed very easily and without 
mistakes by using a text editor.
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Fig. 1  X-Ray Rietveld refinement of fluorapatite (Cu Kα). The solid line is the best-fit profile, and points superimposed on it
are raw data. The differences between the observed and calculated intensites, ∆y=yi(o)-yi(c), are shown by points appearing
at the bottom. Tick marks below the profile indicate the positions of all allowed Kα1 and Kα2 peaks.



4. Data Bases
The following data stored in three sequential files

are input during the execution of RIETAN.
1) Laue group numbers, presence/absence of centers

of symmetry, Hermann-Mauguin space group
symbols, symmetry conditions, and coordinates of
general equivalent positions described for all the
settings of 230 space groups in International
Tables, Vol. 1 [8].

2) Corresponding descriptions in International
Tables, Vol. A [9].

3) Coefficients for analytic approximations of
scattering factors and anomalous dispersion
corrections listed in International Tables, Vol. IV
[10], coherent scattering lengths, incoherent
scattering cross sections, and absorption cross
sections [11], and atomic weights.
One merely enters names of constituent atoms

and space group and setting numbers in conformity
with International Tables, Vol. 1 [8] or Vol. A [9].
After symmetry conditions have been input directly
from File 1) or 2), indices of possible reflections are
generated from them with KDRREF subprograms
written by Cooper, Rouse and Sayers [12]; no pre-
paratory program is needed to generate unique reflec-
tion sets as in the original program of Rietveld [1]. If
non-standard settings are required which are not de-
scribed in International Tables [8][9], symmetry
conditions may be specified directly in the input data.
A further option is also provided to allow the sup-
pression of specified reflection type; this facility is
used when atoms are at special positions only. After
all possible reflections have been generated, their
multiplicities, interplanar spacings, diffraction angles, 
hs, h·ts [13], etc. are calculated and then sorted on
increasing scattering angle, 2θ.

As described above, this program calls for only a
restricted amount of input data in free format owing to 
the presence of the data bases and use of list­directed
READ statements. It is, therefore, especially suited
for those who are not familiar with crystallography or
FORMAT specification codes in FORTRAN.

5. Model Function
The observed intensity, yi(o), at a particular step,

i, is modeled by a calculated intensity, y i(c):

yi(c)= s
k
∑ |Fk|2mkPkL(θk)G(∆θik)+yib(c)      (1)

with
|Fk|

2 = |Fk(cryst.)|2 + |Fk(magn.)|2      (2)

∆θik = θi - θk                   (3)
In Eqs. (1), (2), and (3), k=reflection number, s =

scale factor, Fk = structure factor, mk = multiplicity, Pk

= correction factor for preferred orientation, L(θk) =
Lorentz and polarization factors,* G(∆θik) = profile
shape function, yib(c) = background, Fk(cryst.) =
crystal-structure factor, Fk(magn.) = magnetic-
structure factor,** θi = scattering angle at the ith step,
θk = Bragg angle. The summation in Eq. (1) must be
carried out over all reflections contribut­ing to the net
intensity at the ith step. The diffraction intensity is
multiplied by the scale factor, s, prior to the
summation because RIETAN can deal with mixtures
of two or more phases; s has, of course, a constant
value for all the reflections of a phase.

6. Structure Factors
Several crystal-structure parameters are con-

tained in Fk(cryst.): fractional coordinates (xj, yj, zj),
occupation factors (nj), overall thermal parameters
(Q), individual isotropic thermal parameters (Bj), and
anisotropic thermal parameters (β11j, β22j, β33j, β12j,
β13j, β23j), where j is the site number. Either isotropic
or anisotropic thermal motion can be arbitrarily
assigned to each atom.

The CHARACTER data of the coordinates of
general equivalent points read in from the data base
are converted into a set of rotation matrices and trans-
lation vectors. The program then automatically se-
lects symmetry operations required for each site in an
asymmetric unit by checking whether or not general
equivalent positions calculated for the site overlap
with each other; only these essential sym-metry
operations are used for the subsequent structure factor 
calculations. This procedure greatly reduces the times 
required for the calculation of structure factors and
their derivatives especially when dealing with crystals 
with high symmetry. Furthermore, occupation factors
can be input and refined directly without considering
the site multiplicities arising because one or more
symmetry elements act at the site.

The present version can handle magnetic
structures with collinear spin arrangements. The mag-
netic moment, µj, of each site, the angle between the
spin direction and the unique axis of the lattice
(tetragonal, hexagonal, and rhombohedral), Φ, and
the angles between the spin direction and three axes
(orthorhombic), Φa, Φb, and Φc, are directly refined
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* The polarization factor is unnecessary in neutron and
synchrotron X-ray diffraction.
** Fk(magn.) = 0 in X-ray diffraction.



by using equations given by Shirane [14]. Imple-
mentation of magnetic scattering for non-collinear
spin arrangements is roundly desired; this will be
undertaken some day.

7. Preferred-Orientation Function
Preferred orientation is corrected by the following 

two-parameter function [15] [16]:
Pk =p1 + (1 - pl) exp(-p2φk)             (4)

with
• Flat-plate sample
 φk = ψk (plate crystals)
  π/2 - ψk (needle crystals)
• Cylindrical sample
Φk=  π/2 - ψk (plate crystals)

ψk   (needle crystals)
where ψk is the acute angle between the reciprocal
vector for the kth reflection and preferred-orientation
vector, hpa

*2 + kpb
*2 + ipc

*2. The direction of the pre-
ferred-orientation vector corresponds to that of a
normal to the cleavage plane in the plate crystal, and to 
that of the extension axis in the needle-shaped crystal.
Equation (4) includes the preferred­orientation
function proposed by Rietveld [1] as a special case (p1

= 0). One may be forced to fix p1 at 0 or another
constant value between 0 and 1 because the standard
deviations of p1 and p2 often become extraordinarily
large on refinement of both p1 and p2.

Equation (4) is merely an empirical function, and
neither p1 nor p2 has physical meaning. Neutron dif-
fraction is highly recommended when dealing with
very orientation-prone substances because it gives
much smaller errors arising from preferred orientation 
than X-ray diffraction [17].

8. Profile Shape Function
The profile shape function to approximate the

peak shape of each reflection can be represented by
the product of a symmetric profile shape function,
g(∆θik), and an asymmetric correction, a(∆θik) [1]:

G(∆θik) = g(∆θik)a(∆θik)              (5)
This asymmetry correction is applied to intensity data
in the low 2θ region.
8.1 Symmetric Profile Shape Function

Symmetric profile shape functions used earlier in
Rietveld analysis for the X-ray case were Gaussian
[1], Lorentzian [18], modified Lorentzian [19], and in-
termediate Lorentzian [20]. At present, better sym-
metric profile shape functions, i.e., pseudo-Voigt [21]

and Pearson VII functions [22], are widely used in
place of the above four functions [23].

The present program adopts a modified pseudo-
Voigt function, which is a linear combination of a
Gauss function and a Lorentz function with unequal
peak heights and full widths at half-maximum in-
tensity (FWHM):
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( ) ( )H L H Gk k= δ        (9)

In the above equations, C =normalizing constant, γ =
fraction of the Gaussian component, Hk(G) = FWHM
of the Gaussian component, Hk(L) = FWHM of the
Lorentzian component, δ =ratio of Hk(G) to Hk(L), cs

= 0 or 0.6. Equation (8) represents the dependence of
Hk(G) on θk; U, V, and W are referred to as FWHM
parameters. When correlations among the FWHM
parameters are very high, cs should be set at 0.6 [23].

Equation (6) contains five refinable profile para-
meters: U, V, W, γ, and δ. With appropriate choices of 
γ, this profile shape function can vary from Gaussian
(γ= 1) to Lorentzian (γ = 0). Neutron data are usually
analyzed by fixing γ at 1 because the Gauss function
fits neutron diffraction profiles very well [1].

The difference between the conventional pseudo-
Voigt function [21] [23] and Eq. (6) is that δ is fixed at 
one in the former whereas δ is a variable parameter in
the latter. The use of Eq. (6) leads to R factors a little
lower than those obtained with the conventional
pseudo-Voigt function. However, computational ex-
perience with refinements using Eq. (6) has shown
that the correlation coefficient between γ and δ is
usually very high; one may sometimes be obliged to
fix δ at an appropriate value.
8.2 Asymmetric Correction

In the present version, an empirical equation de-
scribed by Rietveld [1] is used as a(∆θik):
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a(∆θik) = 1-( sin(∆θik)(2∆θik)
2 )/tan(θk)        (10)

a is the asymmetry parameter to be refined. As θk is
increased, a(∆θik) moves on toward 1.
8.3 Another Representation for the Dependence of
FWHM on Scattering Angle

Thompson, Cox, and Hastings [24] reported that
the pseudo-Voigt function can be represented by only
Hk(G) and Hk(L) and that the variation of Hk(G) and
Hk(L) with Bragg angle can be approximated closely
by the functions Vtanθk and Xcosθk which respec-
tively represent the contributions from instrumental
resolution and particle size broadening. Thus, the
profile shape function contains only two profile
parameters: V and X. Their formulation is worth
noting because it is soundly based on physical reality.
The effectiveness of this function in Rietveld analysis
will be tested in the near future.

9. Background Corrections
Background corrections are evaluated as follows.
(i) The background function, yib(c), is used which

is linear in six refinable parameters b0-b5:

( )y c bib j
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(11)

where 2θmax and 2θmin are maximum and minimum
diffraction angle, respectively.

(ii) Four pairs of smoothed values of operator-
selected points in the pattern are fitted with a power-
series polynomial of degree 3, and the value of this
polynomial corresponding to the given value of 2θi is
calculated.

The use of Eq. (11) is preferable except for the
case dealing with samples showing very simple
diffraction patterns, because peaks overlap to a great
extent in the high 2θ region. In Eq. (11), 2θi is nor-
malized between -1 and 1 to reduce the correlations
between b0 - b5.

10. Summary of Refinable Parameters
Table 1 shows variable parameters contained in

yi(c).
Lattice parameters are contained in θk in Eq. (1).

However, it is not lattice parameters but elements of
the metric tensor for the reciprocal lattice (a*2, b*2,
c*2, b*c*cosα*, c*a*cosβ*, a*b*cosγ*) that are
refined in the program [1]; these elements are
converted into lattice parameters upon printing of
parameter values.

11. Constrained Minimization Procedures
11.1 Linear Equality Constraints

In the RIETAN program, simple linear equality
constraints are explicitly solved for selected vari-
ables, and those variables eliminated from the prob-
lem as independent variables. Linear constraints are
input in just the same form as assignment state-ments
in FORTRAN, e.g., ‘A(60) = A(9)’, ‘A(29) = 1.0-
A(24)’, and ‘A(41)=O.95-0.5*A(31)’. In these ex-
pressions, array A stores both variable and fixed
parameters contained in yi(c). When dealing with
mixtures of two or more phases, common profile
parameters are usually assigned to each phase by
introducing linear equality constraints.
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Table 1  Parameters refined in Rietveld analysis.

• Global parameters

Parameter to correct for the zero-point shift of a goniometer

   1) Zero-point error: Z

Parameters to calculate the background

   2) Background parameters b0, b1, b2, b3, b4, b5

• Phase-dependent parameters

Parameters to adjust integrated intensities

   3) Scale factor: s

   4) Preferred-orientation parameters: p1, p2

Profile parameters

   5) FWHM parameters: U, V, W

   6) Gaussian fraction: γ
   7) FWHM ratio: δ
   8) Asymmetery parameter: A

Parameters to determine peak positions

   9) Lattice parameters: a, b, c, α, β, γ
Crystal-structure parameters

  10) Fractional coordinates: xj, yj, zj

  11) Occupation factors: nj

  12) Overall thermal parameter: Q

  13) Isotropic thermal parameters: Bj

  14) Anisotropic thermal parameters: β11j, β22j,

          β33j, β12j, β13j, β23j

Magnetic-structure parameters

  15) Magnetic moments in Bohr magneton: µj

  16) Angle between the spin direction and the unique axis*: Φ
  17) Angles between the spin direction and the three axes**:

         Φa, Φb, Φc

* Tetragonal, hexagonal and rhombohedral systems

** Orthorhombic systems



11.2 Refinement Based on Information about the
Crystal Structure

Powder diffraction patterns contain far poorer
information than single-crystal intensity data mainly
owing to the overlap of equivalent and neighboring
reflections. Accordingly, a priori  information on the
crystal structure should be introduced into the pro-
gram as constraints when reflections overlap very
extensively or when a number of structure parameters
have to be refined because many atoms are contained
in an asymmetric unit. Most programs for Rietveld
analysis are able to apply only equality constraints
such as those required to keep certain bond lengths or
bond angles fixed or equal [25]. True bond lengths or
angles are not exactly equal to expected ones.
Therefore, the introduction of inequality constraints
[26] is preferred, permitting the imposition of ranges
expected for interatomic distances and bond angles as
well as thermal parameters as boundary conditions.

11.3 Nonlinear Constraints
Constrained nonlinear programming problems

are solved by an exterior penalty function method
[27]. Rietveld analysis under nonlinear constraints is
formally stated as

Minimize: f(x)= w i
i

∑ [yi(o)-yi(c)]2          (12)
subject to p linear and/or nonlinear inequality
constraints

gn(x) ≥ 0  n= 1, 2, . . . ,P    (13)
and q linear and/or nonlinear equality constraints

hn(x) = 0  n=1,2, . . .,Q    (14)
where x is the vector of variable parameters, and w i (= 
1/yi(o)) is the weighting based on counting statistics.

The exterior penalty function method transforms
a constrained optimization problem into a sequence
of unconstrained optimizations for K=0, 1, 2, given
by

Minimize: F(x, t(K) = f(x) +
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Fig. 2  Function subprogran CON written for the introduction of 12 constraints in the Rietveld anaylsis of ammonioleucite.
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where t(K)  is a strictly increasing sequence of positive
numbers, and H is the Heaviside operator such that
H(a) = 0 for a ≥ 0 and H(a) = 1 for a < 0. The second
and third terms in Eq. (15) prevent the x vector from
getting too far away from the feasible region. A
nonfeasible sequence of points generated by this
algorithm may yield a feasible solution in the limit,
i.e., t(K) = ∞. Because Eq. (15) has a sum-of-squares
form, conventional algorithms for nonlinear least-
squares computations, which will be described in
chapter 12, may be employed without any modifi-
cations.

The algorithm of the exterior penalty function
method consists of the following four steps:
1) Set K at 0. Give the initial values of x and t(0).
2) Refine a set of parameters x which minimize F(x,

T(K)).
3) If the second and third terms in Eq. (15) are reduced 

to nil, stop the calculation since the current values
of x are the solution.

4) Add 1 to K Increase t(K) and return to step 2).
As Fig. 2 shows, the constraints are introduced

into the program by means of a separately written
function subprogram named CON, the purpose of
which is to evaluate H(gn(x))gn(x) and hn(x) when
provided with the x vector. Those partial derivatives
of the functionals of constraints with respect to
parameters which are used in least-squares calcula-
tions are approximated by centered differences not
only to save preparation times to formulate analytical
derivatives but also to avoid human errors.

The above method has been successfully applied
to the refinement of the structure of yttrium-
containing α-sialon [28]. In that work, X-ray powder
data were supplemented with eight inequality con-
straints that restrict the (Si, Al)-(N, O) bond lengths
within a reasonable range: 0. 175 ± 0.005 nm.

12.  Nonlinear Least-Squares Procedures
Almost all computer codes for Rietveld

refinement employ the Gauss-Newton algorithm to
find parameters which minimize the weighted sum-
of-squares of the residuals apart from the progressive
programs of Baerlocher [26], and Howard and Snyder
[29]. However, when applied to Rietveld analysis
without any improvements, this method suffers
disadvantages that the range of convergence is not
very great and that the refinements often converge to
local minima [4]. Since none of the algorithms has

proved to be so superior that it can be classified as a
universal panacea for nonlinear least-squares solu-
tions, it is impolitic to persist in only one method of
least squares.

Three different methods are available for
nonlinear least-squares fitting: Gauss-Newton, modi-
fied Marquardt, and conjugate direction methods. All
of them are designed to give stable convergence. The
Gauss-Newton and Marquardt methods use deriv-
atives of yi(c) with respect to x, whereas the conjugate 
direction method is based on a direct-search algo-
rithm. Since the values of initial parameters in the,
input file can be replaced with those of final param-
eters after the refinement, it is very easy to change the
method of least squares one after another and con-
tinue the calculation from the last point of the pre-
vious refinement.

In each of these methods, variable parameters in
an input file can be updated after they have been
refined. Thus, one can carry out Rietveld analysis
again with parameter values obtained in the previous
refinement.
12.1 Gauss-Newton Method

This algorithm calculates changes in parameters
at each iterative step, ∆x, from the normal equation:

M∆X=N                        (16)
 with
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In Eqs. (17) and (18), g n(x) and hn(x) are, respectively, 
abbreviated as gn and hn. The coefficient matrix M
and the column matrixes ∆x and N are calculated in
double precision owing to the large number of data
points in Rietveld analysis and considerable numeri-
cal errors in the least-squares method with the normal
equation.

Although ∆x is evaluated from M-1N in most
structure-refinement programs, there is little to
recommend such a technique because of long compu-
tation time and low precision. In RIETAN, the
Choleski decomposition of the symmetric, positive
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definite matrix, M, and back-solution for consistent
systems of linear equations are performed. In cases
where M is non-positive definite, the Marquardt
method described in the next section should be used.

A new set of x, x', is readily obtained by
x'= x + d∆x                    (19)

with
d=2-n    n = 0, 1, 2, 3, 4

The initial value of the damping factor, d, is set at 1 (n
= 0). If F(x, t(K)) does not decrease with x', d is
decreased, and x' is calculated again with Eq. (19).
The value of d is automatically adjusted according to
just the same rule adopted in a SALS program [30].
12.2 Modified Marquardt's Method

This method also uses Eqs. (17) and (18) but adds
λ-diag(M) (λ: Marquardt parameter, diag: diagonal
matrix) to M to stabilize the convergence to the
minimum [31]:

(M+ λ - diag(M))∆x = N                (20)
Then, ∆x tends towards the steepest descents

direction as λ becomes larger, while the Gauss-
Newton solution is obtained when λ becomes negli-
gible. The value of λ is adjusted during a series of
iterations by the same technique as described by
Fletcher [32]. Even if the coefficient matrix M is not
positive definite, it can be made computationally
positive definite by choosing the Marquardt parameter 
large enough. Modified Marquardt's method is very
effective for dealing with highly nonlinear model

functions, yi(c), or problems in which starting values
for parameters differ markedly from the true ones.
12.3 Conjugate Direction Method

The conjugate direction method [33] is one of the
most efficient algorithms to minimize objective func-
tions without calculating derivatives. The minimum
of F(x, t(K)) is located by successive unidimensional
searches from an initial point along a set of conjugate
directions generated by the procedure. A combination 
of the DSC and Powell algorithms [34] was selected
as a unidimensional optimization routine.

Since the directions for minimization are deter-
mined solely from successive evaluations of the ob-
jective function, F(x, t(K)), this procedure is much
slower than the two least-squares methods with deri-
vatives but capable of solving ill-conditioned prob-
lems in which very high correlations exist between
parameters. It is mainly used in the late stages of
refinement to test the prospect of a local minimum
being the global minimum or escape from a local
minimum by using sufficiently large step sizes of line
searches. On the other hand, the Gauss-Newton and
Marquardt algorithms can check the convergence to
the global minimum only by using different starting
vectors.
12.4 Incremental Refinements

One usually proceeds in steps in Rietveld
analysis, first refining only one or two parameters and 
then gradually letting more and more of the
parameters be adjusted in the successive least-squares 
refinement cycles [4]. RIETAN requires only a single
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Fig. 3  X-ray powder diffraction pattern simulated for the orthorhobmic form of Ba2YCu3O7-y.



job to execute such incremental refinements; that is,
variable parameters in each cycle can be appointed
when using the methods of least squares with
derivatives. Troublesome repetition of batch jobs is,
therefore, unnecessary in most Rietveld refinements.
Usually, linear parameters, that is, the background
parameters and the scale factor are refined in the first
cycle, profile parameters in the second cycle, lattice
pa­rameters in the third cycle, and subsequently all the 
.parameters simultaneously. Thus far, almost all
Rietveld refinements have been carried out routinely
with this procedure.

Automatic refinements are also possible in which
the parameters obtained by the successive refinements 
described above are further adjusted by the conjugate
direction method to ensure that there are no lower
minima in the vicinity of the the one found by the
initial refinement.
12.5 Standard Deviations

The standard deviations of parameters are calcu-
lated from diagonal elements in the inverse of the
coefficient matrix M according to the procedure pro-
posed by Scott [35]. M is neither inverted in each
iteration in the two methods using derivatives nor
calculated in Powell's method. For this reason, the
standard deviations are calculated by selecting the
Gauss-Newton method and specifying the number of
iterations as zero after the refinement has finished.

The standard deviations of lattice parameters are
calculated from those of the elements of the metric
tensor (cf chapter 10) with formulae given by Kelsey
[36].

13. Graphic Data Processing
One can not only plot the observed and calculated

intensities after refinement by the least-squares meth-
ods (Fig. 1) but also simulate powder diffraction
patterns of pure substances and mixtures from user-
supplied profile, lattice, and structure parameters
(Fig. 3). These figures are drawn using an incremental 
plotter, a laser beam printer, or a graphic display in
interactive mode. Theoretical diffraction patterns
serve for various semi-qualitative analyses such as
examination of the validity of structural models,
order-disorder distribution, degree of preferred orien-
tation, characterization of polytype structures, and
estimate of occupation factors in solid solutions.
Since CalComp-compatible graphic subroutine pack-
ages are used for portability, RIETAN must be run on
other computers without difficulty.

14. Connection with Other Programs
After the refinement has been finished, three files

can be created which store (i) y i(o), y i(c), and 2θk, (ii)
final crystal-structure parameters, their standard de-
viations, final lattice parameters, symmetry opera-
tions etc., and (iii) hkl, F’o’, and Fc. Single quotation
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Fig. 4 Rietveld refinement profile for TOF neutron diffraction data of La1.9Ca1.1Cu2O6. Q(=2π/d) is plotted as abscissa and the net 
intensity as ordinate. Backgournd was fit as part of the refinement but has been subtracted before plotting.



marks in F’o’ are needed because it is estimated
indirectly from summation of contributions of the
peak to net observed intensities [1]. The above three
files respectively enable (i) drawing Rietveld
refinement patterns (Fig. 1), (ii) calculation of inter-
atomic distances and bond angles with an ORFFE
program [37], calculation of Madelung energies by
Ewald's method, and drawing crystal structure
illustrations with an ORTEP 11 program [38], and (iii) 
Fourier and D syntheses with F’o’ and Fc data. Fourier
and D syntheses, followed by drawing contour maps,
are very useful for improving incomplete structural
models.

15. Further Developments of RIETAN
The Rietveld method has been successively

applied to time-of-flight (TOF) neutron powder dif-
fraction data with an adaptation of the above program
(Fig. 4). These intensity data were measured at a fixed
scattering angle on a High-Resolution Powder
diffractometer, HRP [39], at the pulsed neutron source 
(KENS) at the National Laboratory for High Energy
Physics (KEK). This TOF neutron diffraction version
retains all the features of the angle-dispersive one. A
new profile shape function optimized for a cold
neutron source (solid methane at 20 K) at KENS was
implemented in it. Details on this version have been
reported elsewhere [40]. Recently, it has been applied
successfully to the structure refinement of a series of
high-Tc superconducting oxides [41].

The program written for the fixed-wavelength
case has been modified so as to enable the Rietveld
analysis of synchrotron X-ray data obtained from a
new dedicated powder diffractometer set up at the
Photon Factory at KEK. The flat-plate geometry is
unsuitable for collecting intensity data because of
marked preferred orientation caused by highly parallel 
X rays. The Debye-Scherrer geometry with rotation of 
glass capillaries containing samples (some­times
mixed with amorphous silica) is usually adopted to
reduce the preferred-orientation effect as much as
possible [24].

Thus, RIETAN is now applicable to the
refinement of crystal structures from powder data
obtained by four different methods [3]:

Fixed-wavelength methods with   

characteristic X-ray source

synchrotron X-ray source

reactor neutron source

Fixed-angle method with pulsed neutron source

One can enjoy the benefits of the common and user-
friendly software for the Rietveld analysis of results
from the four categories of experimental technique.

Some time later, the two versions of RIETAN
will be integrated into one program so that structure
parameters can be refined simultaneously with the
use of both X-ray and neutron diffraction data [42].
The different diffraction methods allow the collection 
of several, in many respects complementary, data sets 
from one kind of sample. Therefore, Rietveld refine-
ments with the combined intensity data will be very
helpful to obtain detailed information about the struc-
ture parameters of whole kinds of atoms.
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